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1 Introduction 

Standard rigorous theories of stock option pricing introduce a hedging portfolio consisting of the underlying risky stock 

and a riskless bond. The price of the option is then defined as the smallest initial endowment for which there exists an 

admissible wealth process for the hedging portfolio, that is, for which there exists a self-financing trading strategy for 

the hedging portfolio in which the resulting wealth process attains the desired value process at the final time. We show 

that in a complete market with mild smoothness assumptions on the stock's dispersion and the bond's interest rate, 

current stock option pricing theories have undesirable rigidity; they exclude all but one admissible wealth process which 

is a "regular" deterministic function of the time and the current stock price, i.e. one which is sufficiently smooth to 

admit an application of Itô's lemma and which has polynomial growth in the stock price variable. In particular, when the 

stock price is modeled by geometric Brownian motion, the Black-Scholes process is the only admissible wealth process 

which is a regular deterministic function of the time and the current stock price. 

2 Market Assumptions, European Options and Contingent Claims 

Let (Ω, 𝒜, ℙ) be a probability space in which a filtration ℱ = {ℱ𝑡: 𝑡 ≥ 0} and a Brownian motion 𝑊 = {𝑊𝑡: 𝑡 ≥ 0} are 

given. We will assume throughout this paper that the Brownian process 𝑊 is adapted to ℱ and ℱ0 contains every 𝑁 ∈

𝒜 such that ℙ(𝑁) = 0. Consider a market with two assets which are traded continuously on a time horizon 0 ≤ 𝑇 < ∞. 

The first asset, called a bond, is riskless with price �̂�(𝑡) which evolves according to the equation 

𝑑�̂�(𝑡) = 𝑟(𝑡)�̂�(𝑡)𝑑𝑡. (2.1) 

The second asset, called a stock, is risky with price 𝑆𝑡 modeled by the linear stochastic differential equation 

𝑑𝑆𝑡 = 𝜇𝑡𝑆𝑡𝑑𝑡 + 𝜎(𝑡)𝑆𝑡𝑑𝑊𝑡 . (2.2) 

The bond's interest rate 𝑟 = 𝑟(𝑡) and the stock's dispersion 𝜎 = 𝜎(𝑡) are assumed Lebesgue measurable and bounded 

on [0, 𝑇], and the stock's mean rate of return process {𝜇𝑡 , ℱ𝑡: 0 ≤ 𝑡 ≤ 𝑇} is assumed measurable, adapted, and uniformly 
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bounded on [0, 𝑇] × Ω. Furthermore, we assume that the market is complete; i.e. there is an 𝜖 > 0 such that 𝜎(𝑡) ≥ 𝜖  

for all 0 ≤ 𝑡 ≤ 𝑇. 

A European call option on the stock is a contract starting at time 𝑡 = 0 which gives the holder the right to buy at a 

specified time 𝑇 > 0, the expiration date, one share of the stock at a specified price q, the exercise price. A European 

call option is a special case of a European contingent claim. A European contingent claim (𝑇, 𝑓𝑇 , 𝑔) is a financial 

instrument consisting of a payoff rate per unit time 𝑔 = {𝑔𝑡 , ℱ𝑡: 0 ≤ 𝑡 ≤ 𝑇} and a terminal payoff 𝑓𝑇. Here 𝑔 is a 

nonnegative, measurable, and adapted process and 𝑓𝑇 is a nonnegative, ℱ𝑡-measurable random variable. In order to 

ensure square integrability of a martingale in a subsequent result (Theorem 3.1), we will assume that 

𝐸 [𝑓𝑇 + ∫ 𝑔𝑡𝑑𝑡

𝑇

0

]

2

< ∞. 

Clearly, a European call option is a European contingent claim with 𝑔 ≡ 0 and 𝑓𝑇 = (𝑆𝑇 − 𝑞)+. 

3 Contingent Claim Valuation and Hedging Strategies 

Consider the problem of determining the fair value at time 𝑡 = 0 for a European contingent claim (𝑇, 𝑓𝑇 , 𝑔). Following 

[1, 3, 7, 9], the contingent claim is simulated by a hedging strategy (𝜋, 𝐶) consisting of a portfolio process 𝜋 =

{𝜋𝑡 , ℱ𝑡: 0 ≤ 𝑡 ≤ 𝑇} based on the stock and bond and a consumption process 𝐶 = {𝐶𝑡 , ℱ𝑡: 0 ≤ 𝑡 ≤ 𝑇}. 

More precisely, suppose that an investor with an initial endowment 𝑥 ≥ 0 invests in the stock and bond. Let 𝑁(𝑡) and 

�̂�(𝑡) denote the number of shares of the stock and the bond, respectively, owned by the investor at time 𝑡. The wealth 

process of the investor at time 𝑡 is then described by 𝑋0 = 𝑥 and 

𝑋𝑡 = 𝑁(𝑡)𝑆𝑡 + �̂�(𝑡)�̂�(𝑡) 

for 0 < 𝑡 ≤ 𝑇. If trading occurs at discrete times, say 𝑡 and 𝑡 + ℎ, and 𝐶𝑡 denotes the cumulative amount consumed by 

the investor up to time 𝑡, then the increment in investor wealth is given by 

𝑋𝑡+ℎ − 𝑋𝑡 = �̂�(𝑡) (�̂�(𝑡 + ℎ) − �̂�(𝑡)) + 𝑁(𝑡)(𝑆𝑡+ℎ − 𝑆𝑡) − (𝐶𝑡+ℎ − 𝐶𝑡). 

The analogous continuous-time change in wealth is given by the following expression where Itô's differentials replace 

discrete differences: 

𝑑𝑋𝑡 = �̂�(𝑡)𝑑�̂�(𝑡) + 𝑁(𝑡)𝑑𝑆𝑡 − 𝑑𝐶𝑡 . 

Defining the portfolio process by 𝜋𝑡 = 𝑁(𝑡)𝑆𝑡 and using (2.1) and (2.2), it is easy to see that 

𝑑𝑋𝑡 = 𝑟(𝑡)𝑋𝑡𝑑𝑡 + (𝜇𝑡 − 𝑟(𝑡))𝜋𝑡𝑑𝑡 + 𝜎(𝑡)𝜋𝑡𝑑𝑊𝑡 − 𝑑𝐶𝑡 . (3.1) 

Assume 𝜋 = {𝜋𝑡 , ℱ𝑡: 0 ≤ 𝑡 ≤ 𝑇} is measurable, adapted, and satisfies ∫ 𝜋𝑠
2𝑑𝑠

𝑇

0
< ∞ a.s. ℙ for every 0 < 𝑇 < ∞. 

Similarly, assume the consumption process 𝐶 = {𝐶𝑡 , ℱ𝑡: 0 ≤ 𝑡 ≤ 𝑇} is progressively measurable with respect to {Ft}, 

nonnegative, nondecreasing, bounded, and right-continuous with 𝐶0 = 0 a.s. ℙ. The process pair (𝜋, 𝐶) is called a 

hedging strategy for the contingent claim (𝑇, 𝑓𝑇 , 𝑔) provided, a.s. ℙ, 𝐶𝑡 = ∫ 𝑔𝑠𝑑𝑡
𝑡

0
 for 0 ≤ 𝑡 ≤ 𝑇 and 𝑋𝑡 = 𝑓𝑇. Here 𝑋 is 

the wealth process (3.1) associated with the pair (𝜋, 𝐶) and the initial endowment 𝑋0 = 𝑥. Furthermore, the hedging 

strategy (𝜋, 𝐶) is called admissible for the initial endowment 𝑥 ≥ 0 provided it is self-financing; that is, the associated 

wealth process 𝑋 satisfies 𝑋𝑡 ≥ 0 for all 0 ≤ 𝑡 ≤ 𝑇, a.s. ℙ. In this case, 𝑋 is also called admissible. The fair value at 

time 𝑡 = 0 of the contingent claim (𝑇, 𝑓𝑇 , 𝑔) is defined as the smallest value 𝑥 ≥ 0 for which there exists an admissible 

hedging strategy (𝜋, 𝐶) for the contingent claim with initial endowment 𝑥. 

Under the hypothesis of a complete market, a formula for the fair value of a contingent claim and an expression for the 

wealth process of the associated unique hedging strategy was obtained in [1]. 



Theorem 3.1. Let the contingent claim (𝑇, 𝑓𝑇 , 𝑔) be given. Then under the assumption of a complete market, the fair 

value of the contingent claim is given by the expectation ẼQ of 

𝑄 = 𝑒− ∫ 𝑟(𝑢)𝑑𝑢
𝑇

0 𝑓𝑇 + ∫ 𝑒− ∫ 𝑟(𝑢)𝑑𝑢
𝑠

0 𝑔𝑠𝑑𝑠

𝑇

0

 

with respect to the probability measure ℙ̃ whose Radon-Nikodym derivative with respect to ℙ is given by 

𝑑ℙ̃

𝑑ℙ
|

ℱ𝑇

= exp {− ∫ 𝜎(𝑠)−1(𝜇𝑠 − 𝑟(𝑠))𝑑𝑊𝑠

𝑇

0

−
1

2
∫ 𝜎(𝑠)−2(𝜇𝑠 − 𝑟(𝑠))

2
𝑑𝑠

𝑇

0

}. 

Furthermore, there exists a unique admissible hedging strategy for the contingent claim with initial endowment  𝑥 =

Ẽ𝑄 and wealth process 

𝑋𝑡 = [𝑒− ∫ 𝑟(𝑢)𝑑𝑢
𝑇

𝑡 𝑓𝑇 + ∫ 𝑒− ∫ 𝑟(𝑢)𝑑𝑢
𝑠

𝑡 𝑔𝑠𝑑𝑠

𝑇

𝑡

| ℱ𝑡]. 

4 The Result 

Let us now consider the special case of the European contingent claim (𝑇, 𝑓𝑇 , 0) where the terminal payoff 𝑓𝑇 is a 

continuous function 𝜌: [0, ∞) →: [0, ∞) of the stock price at time 𝑇: 𝑓𝑇 = 𝜌(𝑆𝑇 , ). Note that the stochastic differential 

equation (2.2) for the stock price has, together with the initial condition 𝑆0, the unique strong solution 

𝑆𝑇 = 𝑆0 exp {∫ (𝜇𝑠 −
1

2
𝜎2(𝑠)) 𝑑𝑠

𝑡

0

− ∫ 𝜎(𝑠)𝑑𝑊𝑠

𝑡

0

}. 

Because the process 𝜃𝑡 = (𝜎(𝑡))
−1

(𝜇𝑡 − 𝑟(𝑡)) is bounded, if we set 

�̃�𝑡 = 𝑊𝑡 + ∫ 𝜃𝑠𝑑𝑠

𝑡

0

 (4.1) 

for 0 ≤ 𝑡 < ∞, then the process {�̃�𝑡 , ℱ𝑡: 0 ≤ 𝑡 ≤ 𝑇} is a Brownian motion on (Ω, ℱ𝑡 , ℙ̃𝑇) by the Girsanov theorem. 

Consequently, for any time 𝑡 ≥ 0 we may write 

𝑆𝑡 = 𝑆0 exp {∫ (𝑟(𝑠) −
1

2
𝜎2(𝑠)) 𝑑𝑠

𝑡

0

+ ∫ 𝜎(𝑠)𝑑�̃�𝑠

𝑡

0

},  (4.2) 

and for times 𝑢 > 𝑡, 

𝑆𝑢 = 𝑆𝑡 exp {∫ (𝑟(𝑠) −
1

2
𝜎2(𝑠)) 𝑑𝑠

𝑢

𝑡

+ ∫ 𝜎(𝑠)𝑑�̃�𝑠

𝑢

𝑡

}. 

Hence we can express the wealth process of Theorem 3.1 as 

𝑋𝑡 = �̃� [𝑒− ∫ 𝑟(𝑢)𝑑𝑢
𝑇

𝑡 𝜌(𝑆𝑇)| ℱ𝑡] = 𝑒− ∫ 𝑟(𝑢)𝑑𝑢
𝑇

𝑡 �̃� [𝜌 (𝑆𝑡 exp {∫ (𝑟(𝑠) −
1

2
𝜎2(𝑠)) 𝑑𝑠

𝑇

𝑡

+ ∫ 𝜎(𝑠)𝑑�̃�𝑠

𝑇

𝑡

})| ℱ𝑡] =: 𝑌𝑇 . 

Taking the expectation of 𝑌𝑇 starting at time 𝑡 with initial value 𝑦 = 𝑆𝑡, we obtain 



�̃�𝑡,𝑦[𝑌𝑇] = 𝑒− ∫ 𝑟(𝑢)𝑑𝑢
𝑇

𝑡 �̃�𝑡,𝑦 [𝜌 (𝑦 exp {∫ (𝑟(𝑠) −
1

2
𝜎2(𝑠)) 𝑑𝑠

𝑇

𝑡

+ ∫ 𝜎(𝑠)𝑑�̃�𝑠

𝑇

𝑡

})] (4.3) 

=: 𝐺(𝑡, 𝑦).  (4.4) 

 

Observe that we can write the value of the valuation process for the contingent claim (𝑇, 𝑓𝑇 , 0) at each time 𝑡 ∈ [0, 𝑇] as 

a deterministic function, dependent only on the time t and the current price 𝑦 = 𝑆𝑡 of the stock. 

We can identify this function 𝐺 = 𝐺(𝑡, 𝑥) as a solution to a partial differential equation by appealing to a stochastic 

representation theorem in the spirit of Feynman [4] and Kac [6]. Consider the stochastic integral equation 

𝑆𝑠
𝑡,𝑥 = 𝑥 + ∫ 𝛽(𝑢, 𝑆𝑢

𝑡,𝑥)𝑑𝑢

𝑠

𝑡

+ ∫ 𝛼(𝑢, 𝑆𝑢
𝑡,𝑥)𝑑𝑊𝑢

𝑠

𝑡

 (4.5) 

for 𝑡 ≤ 𝑠 < ∞ where 𝛾 = 𝛾(𝑡, 𝑥), 𝛽 = 𝛽(𝑡, 𝑥), and 𝛼 = 𝛼(𝑡, 𝑥) are continuous on [0, ∞) × ℝ and the linear growth 

condition |𝛽(𝑡, 𝑥)|2 + |𝛼(𝑡, 𝑥)|2 ≤ 𝐾2(1 + 𝑥2) is satisfied for some positive constant K and all 0 ≤ 𝑡 < 𝑇. For every 

pair (𝑥, 𝑡), let the equation (4.5) have a weak solution which is unique in the sense of probability. 

Theorem 4.1. ( [8], p. 366) Let 𝑣 = 𝑣(𝑡, 𝑥) be continuous on [0, 𝑇] × ℝ, of class 𝐶1,2([0, 𝑇) × ℝ), and satisfy the 

Cauchy final value problem: 

−
𝜕𝑣

𝜕𝑡
+ 𝛾(𝑡, 𝑥)𝑣 =

1

2
𝛼2(𝑡, 𝑥)

𝜕2𝑣

𝜕𝑥2
+ 𝛽(𝑡, 𝑥)

𝜕𝑣

𝜕𝑥
  (4.6) 

in [0, 𝑇) × ℝ, 

𝑣(𝑇, 𝑥) = 𝑓(𝑥) 

if 𝑥 ∈ ℝ, and the polynomial growth condition 

max{|𝑣(𝑡, 𝑥)|: 0 ≤ 𝑡 ≤ 𝑇} ≤ 𝑀(1 + |𝑥|2𝜇) 

for some constants 𝑀 > 0 and 𝜇 ≥ 1 and all 𝑥 ∈ ℝ. Then 𝑣 admits the stochastic representation 

𝑣(𝑡, 𝑥) = 𝐸𝑡,𝑥 [𝑓(𝑆𝑇
𝑡,𝑥) exp {− ∫ 𝑟(𝑠, 𝑆𝑠

𝑡,𝑥)𝑑𝑠

𝑇

𝑡

}] (4.7) 

on [0, 𝑇] × ℝ. 

Comparing (4.3) with (4.7) and taking 𝛾(𝑡, 𝑥) = 𝑟(𝑡), 𝛽(𝑡, 𝑥)) = 𝑟(𝑡)𝑥, and 𝛼(𝑡, 𝑥) = 𝛼(𝑡)𝑥 in (4.6), we are led to 

consider the Cauchy final value problem: 

−
𝜕𝐺

𝜕𝑡
+ 𝑟(𝑡)𝐺 =

1

2
𝜎2(𝑡)𝑥2

𝜕2𝐺

𝜕𝑥2
+ 𝑟(𝑡)𝑥

𝜕𝐺

𝜕𝑥
 (4.8) 

in [0, 𝑇) × (0, ∞), 

𝐺(𝑇, 𝑥) = 𝜌(𝑥) (4.9) 

if 𝑥 ∈ (0, ∞), and 

max{|𝐺(𝑡, 𝑥)|: 0 ≤ 𝑡 ≤ 𝑇} ≤ 𝑀(1 + |𝑥|2𝜇) (4.10) 

for some constants 𝑀 > 0 and 𝜇 ≥ 1 and all 𝑥 ∈ (0, ∞). The transformations 𝑦 = ln(𝑥), 𝜏 = 𝑇 − 𝑡 , and 𝑢(𝜏, 𝑦) =
𝐺(𝑡, 𝑥) convert (4.8), (4.9), and (4.10) into an equivalent Cauchy initial value problem: 

𝜎2(𝑡)

2

𝜕2𝑢

𝜕𝑦2
+ (𝑟(𝑡) −

𝜎2(𝑡)

2
)

𝜕𝑢

𝜕𝑦
− 𝑟(𝑡)𝑢 −

𝜕𝑢

𝜕 𝜏
= 0 (4.11) 



in (0, 𝑇] × ℝ, 

𝑢(0, 𝑦) = 𝜌(𝑒𝑦) (4.12) 

if 𝑦 ∈ ℝ, and 

max{|𝑢(𝜏, 𝑦)|: 0 ≤ 𝜏 ≤ 𝑇} ≤ 𝑀(1 + 𝑒2𝜇𝑦) (4.13) 

for all 𝑦 ∈ ℝ. Suppose the bond's interest rate 𝑟 = 𝑟(𝑡) and the stock's dispersion 𝜎 = 𝜎(𝑡) are uniformly Hölder 

continuous on [0, 𝑇] for some exponent 𝛼 ∈ (0,1], that 𝜎(𝑡) ≥ 𝜖 > 0 for all 𝑡 ∈ [0, 𝑇], and 𝜌 = 𝜌(𝑥) is a continuous 

function on [0, ∞) satisfying the growth condition 

|𝜌(𝑥)| ≤ 𝐿 exp(𝑘𝑥2) (4.14) 

for some constants 𝐿 ≥ 0 and 𝑘 > 0 and all 𝑥 ∈ [0, ∞). Standard existence and uniqueness results for parabolic partial 

differential equations (cf. [5] Chapter 1, Theorems 12 and 16) then guarantee that there is one and only one function 

𝑢 = 𝑢(𝜏, 𝑦) in 𝐶([0, 𝑇] × ℝ) which satisfies (4.11), (4.12), and (4.13). Thus (4.8), (4.9), and (4.10) have a unique 

solution 𝐺 = 𝐺(𝑡, 𝑥) and consequently, all the hypotheses of Theorem 4.1 are fulfilled. We conclude that the evaluation 

process can be expressed as 𝑋𝑡 = 𝐺(𝑡, 𝑆𝑡) where 𝐺 = 𝐺(𝑡, 𝑥) is the unique solution of the Cauchy final value problem 

(4.8), (4.9), and (4.10). Therefore, the following result (cf. [10]) shows that, under mild smoothness conditions on the 

stock's dispersion and the bond's interest rate, we can bypass Theorem 3.1. 

Theorem 4.2. Let 𝑟 and 𝜎 be uniformly Hölder continuous functions on [0, 𝑇] for some exponent 𝛼 ∈ (0,1], let 𝜎(𝑡) ≥
𝜖 > 0 for all 𝑡 ∈ [0, 𝑇], let 𝜌 be a continuous function on [0, ∞) satisfying the growth condition (4.14), and let 𝑋𝑡 

denote the wealth process of any admissible hedging strategy (𝜋, 0) for the contingent claim (𝑇, 𝜌(𝑆𝑡), 0). If 𝑋𝑡 =
𝐺(𝑡, 𝑆𝑡), a deterministic function of time and the current stock price, where 𝐺 = 𝐺(𝑡, 𝑥) is continuous on [0, 𝑇] × ℝ, is 

of class 𝐶1,2([0, 𝑇] × ℝ), and satisfies the polynomial growth condition (4.10), then 𝐺 is the unique solution of the 

Cauchy final value problem (4.8), (4.9), and (4.10). 

Proof. From the assumptions, we know directly that equations (4.9) and (4.10) must hold for 𝐺. It remains to show that 

equation (4.8) holds as well. From equation (4.2) we obtain 

𝑆𝑡 = 𝑒∫ 𝑟(𝑠)𝑑𝑠
𝑡

0 𝑀𝑡 ,  (4.15) 

𝑀𝑡 ≔ 𝑆0 exp {∫ 𝜎(𝑠)𝑑�̃�𝑠

𝑡

0

−
1

2
∫ 𝜎2(𝑠)𝑑𝑠

𝑡

0

},  (4.16) 

where 𝑀𝑡 is a martingale since 𝜎 = 𝜎(𝑡) is bounded, and hence we obtain 𝑑𝑀𝑡 = 𝜎(𝑡)𝑀𝑡𝑑�̃�𝑡. Defining Γ(𝑡, 𝑥) ≔

𝐺 (𝑡, 𝑥𝑒∫ 𝑟(𝑠)𝑑𝑠
𝑡

0 ) we have 

𝑋𝑡 = 𝐺(𝑡, 𝑆𝑡) = Γ(𝑡, 𝑀𝑡) (4.17) 

and Itô's lemma implies 

𝑑𝑋𝑡 = 𝑑Γ(𝑡, 𝑀𝑡) =
𝜕Γ

𝜕𝑡
(𝑡, 𝑀𝑡)𝑑𝑡 + 𝜎(𝑡)𝑀𝑡

𝜕Γ

𝜕𝑥
(𝑡, 𝑀𝑡)𝑑�̃�𝑡 +

1

2
𝜎2(𝑡)𝑀𝑡

2
𝜕2Γ

𝜕𝑥2
(𝑡, 𝑀𝑡)𝑑𝑡

= (
𝜕Γ

𝜕𝑡
(𝑡, 𝑀𝑡) +

1

2
𝜎2(𝑡)𝑀𝑡

2
𝜕2Γ

𝜕𝑥2
(𝑡, 𝑀𝑡)) 𝑑𝑡 + 𝜎(𝑡)𝑀𝑡

𝜕Γ

𝜕𝑥
(𝑡, 𝑀𝑡)𝑑�̃�𝑡 . 

Together with 

𝜕Γ

𝜕𝑡
(𝑡, 𝑀𝑡) =

𝜕G

𝜕𝑡
(𝑡, 𝑆𝑡) + 𝑟(𝑡)𝑆𝑡

𝜕G

𝜕𝑥
(𝑡, 𝑆𝑡), 

𝜕Γ

𝜕𝑥
(𝑡, 𝑀𝑡) = 𝑒∫ 𝑟(𝑠)𝑑𝑠

𝑡
0

𝜕G

𝜕𝑥
(𝑡, 𝑆𝑡), 

and 



𝜕2Γ

𝜕𝑥2
(𝑡, 𝑀𝑡) = 𝑒2 ∫ 𝑟(𝑠)𝑑𝑠

𝑡
0

𝜕2G

𝜕𝑥2
(𝑡, 𝑆𝑡), 

this yields 

𝑑𝑋𝑡 = (
𝜕G

𝜕𝑡
(𝑡, 𝑆𝑡) + 𝑟(𝑡)𝑆𝑡

𝜕G

𝜕𝑥
(𝑡, 𝑆𝑡) +

1

2
𝜎2(𝑡)𝑆𝑡

2
𝜕2G

𝜕𝑥2
(𝑡, 𝑆𝑡)) 𝑑𝑡 +  𝜎(𝑡)𝑆𝑡

𝜕G

𝜕𝑥
(𝑡, 𝑆𝑡)𝑑�̃�𝑡 . (4.18) 

But from equations (3.1) and (4.1) we have 𝑑𝑋𝑡 = 𝑟(𝑡)𝐺(𝑡, 𝑆𝑡)𝑑𝑡 + 𝜎(𝑡)𝑆𝑡𝑁𝑡𝑑�̃�𝑡. 

Equating coefficients with (4.18) gives 

𝜎(𝑡)𝑆𝑡𝑁𝑡 = 𝜎(𝑡)𝑆𝑡

𝜕G

𝜕𝑥
(𝑡, 𝑆𝑡) 

so that 

𝑁𝑡 =
𝜕G

𝜕𝑥
(𝑡, 𝑆𝑡) 

and 

𝑟(𝑡)𝐺(𝑡, 𝑆𝑡) =
𝜕G

𝜕𝑥
(𝑡, 𝑆𝑡) + 𝑟(𝑡)𝑆𝑡

𝜕G

𝜕𝑥
(𝑡, 𝑆𝑡) +

1

2
𝜎2(𝑡)𝑆𝑡

2
𝜕2G

𝜕𝑥2
(𝑡, 𝑆𝑡). 

Since ℙ(𝑥 − 𝜖 ≤ 𝑆𝑡 ≤ 𝑥 + 𝜖) > 0 for every 𝑥 ≥ 0 and for every 𝜖 > 0, the function 𝐺 must satisfy equation (4.8). 

5 Summary Observations on the Results 

Assume that the market is complete, 𝜌: [0, ∞) → [0, ∞) is continuous, and the stock price is given by the linear 

stochastic differential equation (2.2). Bensoussan's result - Theorem 3.1 - shows that among all admissible hedging 

strategies (𝜋, 0) for the European contingent claim (𝑇, 𝜌(𝑆𝑡), 0) there exists a unique one with smallest initial 

endowment. Moreover, the discussion in Section 4 shows that the value of the admissible wealth process 𝑋 =
{𝑋𝑡 , ℱ𝑡; 0 ≤ 𝑡 ≤ 𝑇} at each time 𝑡 ∈ [0, 𝑇]  associated with this minimal admissible hedging strategy is a deterministic 

function of the time t and the current price St of the stock: 𝑋𝑡 = 𝐺(𝑡, 𝑆𝑡). 

On the other hand, Theorem 4.2 shows that, under mild smoothness conditions on the stock's dispersion and the bond's 

interest rate and mild smoothness and growth conditions on the terminal payoff, there exists only one admissible wealth 

process 𝑋 = {𝑋𝑡 , ℱ𝑡; 0 ≤ 𝑡 ≤ 𝑇} for the European contingent claim (𝑇, 𝜌(𝑆𝑡), 0) of the form 𝑋𝑡 = 𝐺(𝑡, 𝑆𝑡) in which 𝐺 is 

regular. In fact, using a stochastic representation in the spirit of Feynman and Kac - Theorem 4.1 - 𝐺 is identified as the 

unique solution to the Cauchy final value problem (4.8), (4.9), and (4.10). In the special case when the bond's interest 

rate is constant, 𝑟(𝑡) = 𝑟 > 0, the stock's mean rate of return and dispersion are constant, 𝜇𝑡 = 𝜇 > 0 and 𝜎(𝑡) = 𝜎 >
0, and the terminal payoff models a European stock option with exercise price 𝑞, 𝜌(𝑆𝑡) = (𝑆𝑡 − 𝑞)+, then (2.2) becomes 

geometric Brownian motion 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 , 

and the solution of (4.8), (4.9), and (4.10) is given by the classical Black- Scholes formula [2]: 

𝐺(𝑡, 𝑥) = {
𝑥Φ(𝜆+(𝑇 − 𝑡, 𝑥)) − 𝑞𝑒−𝑟(𝑇−𝑡)Φ(𝜆−(𝑇 − 𝑡, 𝑥)) 𝑖𝑓 0 ≤ 𝑡 < 𝑇, 0 ≤ 𝑥 < ∞,

(𝑥, 𝑞)+                                                                           𝑖𝑓 𝑡 = 𝑇, 0 ≤ 𝑥 < ∞,        
 

where 

𝜆±(𝑡, 𝑥) =
1

𝜎√𝑡
(ln (

𝑥

𝑞
) + 𝑡 (𝑟 ±

𝜎2

2
) ) 

and 

Φ(x) =
1

√2𝜋
∫ 𝑒

−𝑧2

2⁄ 𝑑𝑧

𝑥

−∞

. 
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