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Abstract: In this paper, we present a new collocation method based on Chelyshkov polynomials for solving the system of functional
differential equations under the initial-boundary conditions.By means of Chelyshkov polynomials and collocation points, this method
converts the so-called system into a matrix equation, which involves the unknown Chelyshkov coeffcients. We give some illustrative
examples, which arise in physics, biology, chemistry and mechanics and so on, to indicate the reliability and efficiency of the method.
Also, a technique based on residual functions is performed to check the accuracy of the problem.
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1 Introduction

Mathematical models, especially those related to systems of delay differential and differential-difference equations, are

of the great importance in the real-life such as various mechanics, physics, biology, economy, epidemics, population

dynamic models, automatic control systems, neural networks, chaotic systems and so on [1-10] (For more details, see the

references therein). Therefore, during the last few decades, a number of mathematical methods that are aimed at solving

the so-called systems have appeared in the research literature such as variational iteration method [11], Differential

transformation method [12], Haar functions method [13], homotopy analysis method [14], homotopy perturbation

method [15] and Tau method [16].

In addition to these methods mentioned in the literature, systems of linear differential, integral, integro-differential and

differential-difference equations were solved using the collocation methods based on Sezer’s matrix methods, which are

derived from special functions as Taylor, Chebyshev, Legendre, Laguerre, Hermite, Bessel and so on [17-25].

The area of orthogonal polynomials is a very active research area in mathematics as well as in applications in

mathematical physics, engineering and computer science. One of the latest set of orthogonal polynomials is the set of the

Chelyshkov polynomials {CN0(t),CN1(t), ...,CNN(t), ...}. Recently, these polynomials have created by Chelyshkov in

[26-32], which are orthogonal over the interval [0,1] with respect to the weight function w(x) = 1, and are explicitly

defined by

CNn (t) =
N−n

∑
j=0

(−1) j

(
N −n

j

)(
N +n+ j+1

N −n

)
tn+ j,n = 0,1 . . .N. (1)
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This yields The Rodrigues’ type representation

CNn (t) =
1

(N −n)!
1

tn+1
dN−n

dtN−n

(
tN+n+1(1− t)N−n

)
,n = 0,1, . . . ,N, (2)

and the following orthogonality relations

∫ 1

0
CN p(t)CNq(t)dx =

{
0, p ̸= q
1

p+q+1 , p = q
, p,q, ...,N. (3)

Also it follows from this relation that ∫ 1

0
CNn(t)dx =

∫ 1

0
tndx =

1
n+1

.

By using The Rodrigues’ formula and the Cauchy integral formula for derivatives of an analytic function, one can obtain

the integral relation

CNn (t) =
1

2πi
1

tn+2

∫
Ω1

z(N+2+n)(1− z)N−n

(z− t−1)N−n+1 dz,

where Ω1 is a closed curve, which encloses the point z = t−1.

Chelyshkov polynomials CNn (t) have the analogous properties to those of the classical orthogonal polynomials. In fact,

these polynomials are an example of such alternative orthogonal ones, which are not solutions of the hypergeometric

type, but can be expressed in terms of the Jacobi ones. In addition, they can also be connected to hypergeometric

functions, orthogonal expontional polynomials, and the Jacobi polynomials P(α,β )
k by the following relation,

CNn (t) = tnP(2n,1)
N−n (1−2t),n = 0,1 . . .N.

Hence, they keep distinctively attributes of the classical orthogonal polynomials and may be facilitated to different

problems on approximation. In the family of orthogonal polynomials {CNn (t)}, every member has degree N with N-n

simple roots. Hence, for every N if the roots of the polynomial are chosen as node points, then an acurate numerical

quadrature can be derived.

In this study, we consider the system of functional differential equations with variable coefficients in the form,

m

∑
r=0

k

∑
i=1

S

∑
s=0

{
Pr,s

ji (t)y
(r)
i (λ t +µs)+Qr

ji(t)y
(r)
i (t)

}
= g j(t), j = 1,2, ...,k, 0 ≤ t ≤ 1 (4)

subject to the initial-boundary conditions

m−1

∑
i=0

(
an

jiy
(i)
n (0)+bn

jiy
(i)
n (1)

)
= αni, j = 0,1, · · · , .m−1, n = 1,2, · · · ,k (5)

where an
ji, bn

ji,λ ,µ and αni, are real or complex constants. Meanwhile Pr
ji (t) and Qr

ji (t) are continuous functions defined

in 0 ≤ t ≤ 1. Our aim in this paper is to find an approximate solutions of Eq. (4) under the initial-boundary conditions (5)
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in the truncated Chelyshkov series, based on (1) or (2), form

yi (t) =
N

∑
n=0

ai,nCN,n (t) , i = 1, · · · ,k, 0 ≤ t ≤ 1 (6)

so that ai,n, n = 0,1,2,. . . ,N are the unknown Chelyshkov coefficients. Here, N is chosen any positive integer such that

N ≥ k,m.

2 Fundamental matrix relations

First, we can write yi (t) and their derivatives in the matrix forms as follows:

yi (t) = C(t)Ai or yi (t) = T(t)CAi, i = 1, . . . ,k (7)

y(1)i (t) = C(1)(t)Ai = T(t)BCAi

y(2)i (t) = C(2)(t)Ai = T(t)B2CAi

...

y(r)i (t) = C(r)(t)Ai or y(r)i (t) = T(t)BrCAi, r = 1, . . . ,m (8)

where

C(t) =
[

CN0 CN1 . . . CNN

]
, T(t) =

[
1 t . . . tN

]
if N is odd, from (1) and (3)

C =



(
N

0

)(
N +1

N

)
0 . . . 0 0

−

(
N

1

)(
N +2

N

) (
N −1

0

)(
N +2

N −1

)
. . . 0 0

...
...

. . .
...

...(
N

N −1

)(
2N

N

)
−

(
N −1

N −2

)(
2N

N −1

)
. . .

(
1

0

)(
2N

1

)
0

−

(
N

N

)(
2N +1

N

) (
N −1

N −1

)(
2N +1

N −1

)
. . . −

(
1

1

)(
2N +1

1

)
1


(N+1)x(N+1)

if N is even

C =



(
N

0

)(
N +1

N

)
0 . . . 0 0

−

(
N

1

)(
N +2

N

) (
N −1

0

)(
N +2

N −1

)
. . . 0 0

...
...

. . .
...

...

−

(
N

N −1

)(
2N

N

) (
N −1

N −2

)(
2N

N −1

)
. . .

(
1

0

)(
2N

1

)
0(

N

N

)(
2N +1

N

)
−

(
N −1

N −1

)(
2N +1

N −1

)
. . . −

(
1

1

)(
2N +1

1

)
1


(N+1)x(N+1)
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B =



0 1 0 . . . 0

0 0 2 . . . 0

0 0 0
. . . 0

0 0 0 . . . N

0 0 0 . . . 0


(N+1)x(N+1)

, Ai =
[

ai0 ai1 . . . aiN

]T
, i = 1, ...,k.

Replacing (λ t +µs) by t in the relation (8) we have the matrix form

y(r)i (λ t +µs) = C(r)(λ t +µs)Ai = T(λ t +µs)BrAi, r = 1, ...,m. (9)

The relation between the matrices T(λ t +µs) and T(t) is

T(λ t +µs) = T(t)M(λ ,µs) (10)

such that, for λ ̸= 0 and µs ̸= 0 [33]

M(λ ,µs) =



(
0

0

)
λ 0µ0

s

(
1

0

)
λ 0µ1

s

(
2

0

)
λ 0µ2

s . . .

(
N

0

)
λ 0µN

s

0

(
1

1

)
λ 1µ0

s

(
2

1

)
λ 1µ1

s . . .

(
N

1

)
λ 1µN

s

0 0

(
2

2

)
λ 2µ0

s . . .

(
N

2

)
λ 2µN

s

...
...

...
. . .

...

0 0 0 0

(
N

N

)
λ N µN

s


and for λ ̸= 0 and µs = 0

M(λ ,0) =



1 0 0 . . . 0

0 λ 0 . . . 0

0 0 λ 2 . . . 0
...

...
...

. . .
...

0 0 0 0 λ N


We have the following matrix relation by substituting Eq.(10) into Eq.(9)

y(r)i (λ t +µs) = T(t)M(λ ,µs)BrAi, r = 1, . . . ,m and i = 1, . . . ,k. (11)

By using the relations (8),(10) and (11),we find the following matrix forms

y(r)(t) = T(t)BrCA, r = 0,1, ...,m (12)

and

y(r)(λ t+µs) = T(t)M(λ ,µs)B
rCA,r = 0,1, ...,m (13)
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where

y(r)(t) =


y(r)1 (t)

y(r)2 (t)
...

y(r)k (t)

 ,y(r)(λ t+µs) =


y(r)1 (λ t+µs)

y(r)2 (λ t+µs)
...

y(r)k (λ t+µs)

 ,A =


A1

A2
...

Ak

 ,T(t) =


T(t) 0 . . . 0

0 T(t) . . . 0
...

...
. . .

...

0 0 . . . T(t)

,

M(λ ,µs) =


M(λ ,µs) 0 . . . 0

0 M(λ ,µs) . . . 0
...

...
. . .

...

0 0 . . . M(λ ,µs)

 ,B
r
=


Br 0 . . . 0

0 Br . . . 0
...

...
. . .

...

0 0 . . . Br

 and C =


C 0 . . . 0

0 C . . . 0
...

...
. . .

...

0 0 . . . C

.

3 Method of solution

In this section, we convert the system (4) to linear systems of matrix equations which can be easily solved. Firstly, by

means of the matrix relations (12) and (13), we can write the system (4) in the matrix form

m

∑
r=0

S

∑
s=0

{
Pr,s(t)y(r)(λ t +µs)+Qr(t)y(r)(t)

}
= g(t), (14)

where

Pr,s(t) =


Pr,s

11 (t) Pr,s
12 (t) . . . Pr,s

1k (t)

Pr,s
21 (t) Pr,s

22 (t) . . . Pr,s
2k (t)

...
...

. . .
...

Pr,s
k1 (t) Pr,s

k2 (t) . . . Pr,s
kk (t)

 ,Qr(t) =


Qr

11(t) Qr
12(t) . . . Qr

1k(t)

Qr
21(t) Qr

22(t) . . . Qr
2k(t)

...
...

. . .
...

Qr
k1(t) Qr

k2(t) . . . Qr
kk(t)

 ,g(t) =


g1(t)

g2(t)
...

gk(t)


By substituting the collocation points defined by

tq =
1
N

q, q = 0,1, ...,N

into Eq. (14), the system of the matrix equations is obtained as

m

∑
r=0

S

∑
s=0

{
Pr,s(tq)y(r)(λ tq +µs)+Qr(tq)y(r)(tq)

}
= g(tq),

or briefly expressed as follows
m

∑
r=0

S

∑
s=0

{
PrsY

(r)
+QrY(r)

}
= G, (15)

where

Prs =


Pr,s(t0) 0 . . . 0

0 Pr,s(t1) . . . 0
...

...
. . .

...

0 0 . . . Pr,s(tN)

 ,Y
(r)

=


y(r)(λ t0 +µi)

y(r)(λ t1 +µi)
...

y(r)(λ tN +µi)

 ,Y(r) =


y(r)(t0)
y(r)(t1)

...

y(r)(tN)

 ,
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Qr =


Qr(t0) 0 . . . 0

0 Qr(t1) . . . 0
...

...
. . .

...

0 0 . . . Qr(tN)

 ,G=


g(t0)
g(t1)

...

g(tN)

 .
Using relations (12) and (13) in Eq.(15), we have the fundamental matrix equation

m

∑
r=0

S

∑
s=0

{
PrsTM(λ ,µs)B

rC+QrTBrC
}
= G, (16)

where

T =
[

T(t0) T(t1) . . . T(tN)
]T

.

Briefly, we can write Eq.(16) in the form

WA = G [W;G] (17)

which corresponds to a system of the linear algebraic equations with the unknown Chelyshkov coefficients elements

ai,n, i = 1,2, ...,k,n = 0,1, ...,N. us find a matrix representation of the conditions given in (5). Using the relation (12),

the matrix representation of the initial and boundary conditions which depend on the Chelyshkov coefficients matrix is

obtained as
m−1

∑
j=0

{
ajT(0)+bjT(1)

}
B jCA = α , (18)

where

aj =


aj

1 0 . . . 0

0 aj
2 . . . 0

...
...

. . .
...

0 0 . . . aj
k

 ,bj =


bj

1 0 . . . 0

0 bj
2 . . . 0

...
...

. . .
...

0 0 . . . bj
k

 and

α=
[

α1 α2 . . . αk

]T

aj
i =
[

ai
0 j ai

1 j · · · ai
m−1 j

]T

bj
i =
[

bi
0 j bi

1 j . . . bi
m− j

]T

Thus, the matrix form (18) for the conditions becomes

UA = α or [U;α] ;U =
m−1

∑
j=0

{
a jT(0)+b jT(1)

}
B jC (19)

Lastly, by replacing the last rows of the augmented matrix (17) by the rows of matrix [U;α], we have the new augmented

matrix

W̃Ã = G̃ or
[
W̃;G̃

]
(20)

which is a linear system of algebraic equations. The unknown Chelyshkov coefficients can be found by solving this

system. When the unknown Chelyshkov coefficients ai,0, ai,1, . . . ,ai,N are substituted in Eq. (6), we obtain the Chelyshkov

polynomial solution

yi(t)∼=
N

∑
n=0

ai,nCN,n(t), i = 1, ...,k, 0 ≤ t ≤ 1

On the other hand, when |W̃| = 0 , if rankW̃ = rank
[
W̃;G̃

]
< k(N + 1) , then we may find a particular solution.

Otherwise there is not a solution. We can easily check the accuracy of this solution as follows:

Since the truncated Chelyshkov series (6) is approximate solution of (4), when the function yi,N(t), i = 1,2, ...,k and their

c⃝ 2015 BISKA Bilisim Technology



NTMSCI 3, No. 4, 83-97 (2015) / www.ntmsci.com 89

derivatives are substituted in Eq.(4), the resulting equation must be satisfied approximately; that is, for

tq ∈ [0,1],q = 0,1, ....

E j,N(tq) =

∣∣∣∣∣ m

∑
r=0

k

∑
i=1

S

∑
s=0

{
Pr,s

ji (tq)y
(r)
i (λ tq +µs)+Qr

ji(tq)y
(r)
i (tq)

}
−g j(tq)

∣∣∣∣∣∼= 0, j = 1,2, ...,k (21)

or E j,N(tq) ≤ 10−rp(rp is any positive number). If max(10−rp) =10−r(risanypositiveinteger) is prescribed, then the

truncation limit N is increased until the differences E j,N(tq) at each of the points become smaller than the prescribed

10−r, see [34-38]. If when N is sufficiently large enough, then the error decreases. On the other hand, the error can be

estimated by system,

E j,N(t) =
m

∑
r=0

k

∑
i=1

S

∑
s=0

{
Pr,s

ji (t)y
(r)
i (λ t +µs)+Qr

ji(t)y
(r)
i (t)

}
−g j(t), j = 1, ,2, ...,k

4 Illustrations

In this section, some numerical examples on the problem (4) are given to illustrate the accuracy and effectiveness

properties of the method.

Example 1. [23]. Let us consider the following linear system of second-order advanced differential-difference equations,


y(2)1 (t −1/2)+2ty(1)1 (t +1/3)− ty2 (t −1/2)+ t2y3 (t −1) = g1(t)

y(2)2 (t −1/4)− ty(1)1 (t +1/5)− ty2 (t −1/6)+5y3 (t −1/2) = g2(t)

y(2)3 (t +1/3)− ty(1)1 (t −1/6)+ y(1)3 (t −1/3)+3y1 (t +1/4)+2ty2 (t +1/3) = g3(t)

,0 ≤ t ≤ 1 (22)

and the initial conditions

y1(0) = 0,y′1(0) = 1,y2(0) = 1,y′2(0) = 0,y3(0) = 1,y′3(0) = 1

where 
[l]g1(t) =−sin(t −1/2)+2t cos(t +1/3)− t cos(t −1/2)+ t2et−1,

g2(t) =−cos(t −1/4)− t cos(t +1/5)+ t cos(t −1/6)+5et−1/2,

g3(t) =−t cos(t −1/6)+ tet−1/3 +3sin(t +1/4)+2t cos(t +1/3)+ et+1/3,

and the exact solutions are y1(t) = sin t,y2(t) = cos t and y3(t) = et .

For N = 3 , the approximate solutions by the truncated Chelyshkov series and the collocation points are, respectively,

given by

yi(t) =
3

∑
n=0

anC3,n(t), i = 1,2,3

and t0 = 0, t1 = 1/3, t2 = 2/3, t3 = 1. The fundamental matrix equation of the problem is as follows,

P01TM1,− 1
2
C+P04TM1,− 1

6
C+P05TM1,−1C+P06TM1, 1

3
C+P07TM1, 1

4
C+P12TM1,− 1

3
BC

+P14TM1,− 1
6
BC+P16TM1, 1

3
BC+P18TM1, 1

5
BC+P21TM1,− 1

2
B2C+P23TM1,− 1

4
B2C+P26TM1, 1

3
B2C

A = G,
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where

Pij = diag
[
Pi,j(0), Pi,j(1/3), Pi,j(2/3), Pi,j(1)

]
, i = 0,1,2 and j = 1,2, . . . ,8

P0,1(t) =

0 −t 0

0 0 5

0 0 0

 ,P0,4(t) =

0 0 0

0 t 0

0 0 0

 ,P0,1(t) =

0 0 t2

0 0 0

0 0 0

 ,P0,6(t) =

0 0 0

0 0 0

0 2t 0

 ,

P0,7(t) =

0 0 0

0 3 0

0 0 0

 ,P1,2(t) =

0 0 0

0 0 0

0 0 t

 ,P1,4(t) =

 0 0 0

0 0 0

−t 0 0

 ,P1,6(t) =

2t 0 0

0 0 0

0 0 0

 ,

P1,8(t) =

 0 0 0

−t 0 5

0 0 0

 ,P2,1(t) =

1 0 0

0 0 0

0 0 0

 ,P2,3(t) =

0 0 0

0 1 0

0 0 0

 ,P0,6(t) =

0 0 0

0 0 0

0 0 1

 ,
M1,a = diag

[
M1,a, M1,a, M1,a

]
, a =−1/6,−

1/2,±
1/4,±

1/3,
1/5,−1

M1,−1/2 =


1 −1/

2
1/

4
−1/

8
0 1 −1 3/

4
0 0 1 −3/

2
0 0 0 1

 ,M1,−1/6 =


1 −1/

6
1/

36
−1/

216
0 1 −1/

3
1/

12
0 0 1 −1/

2
0 0 0 1

 , M1,−1 =


1 −1 1 −1

0 1 −2 3

0 0 1 −3

0 0 0 1

,

M1,±1/3 =


1 ±1/3 1/9 ±1/27

0 1 ±2/3 1/3

0 0 1 ±1

0 0 0 1

 , M1,±1/4 =


1 ±1/4 1/16 ±1/64

0 1 ±1/2 3/16

0 0 1 ±3/4

0 0 0 1

 M1,1/5 =


1 1/5 1/25 1/125

0 1 2/5 3/25

0 0 1 3/5

0 0 0 1



T =


T(0)

T
(

1/
3
)

T
(

2/
3
)

T(1)

 , T(ts) = diag
[
T(ts), T(ts), T(ts)

]
,

T(0) =
[

1 0 0 0
]
,

T
(

1/
3
)
=
[

1 1/
3

1/
9

1/
27
]
,

T
(

2/
3
)
=
[

1 2/
3

4/
9

8/
27
]
,

T(1) =
[

1 1 1 1
]
.

B =

B 0 0

0 B 0

0 0 B

 ,B =


0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0

 ,C =


4 1 0 0

−30 10 0 0

60 −30 6 0

−35 21 −7 1



G =


g(0)

g(1/3)

g(2/3)

g(1)

 ,g(0) =
501/1045

1975/957

2063/965

 ,g(1
3

)
=

1313/3140

803/245

5293/1282

 ,g(2
3

)
=

677/3141

247/48

1085/176

 ,
and

g(1) =

198/1745

2065/264

3581/427

 ,A =

A1

A2

A3

and

A1 =
[

a10 a11 a12

]
A2 =

[
a20 a21 a22

]
A3 =

[
a30 a31 a32

]
.
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The augmented matrix for this fundamental matrix equation is calculated as

[W;G] =



225 −123 33 −3 0 0 0 0 0 0 0 0 ; 501/1045

0 0 0 0 345/2 −183/2 45/2 −3/2 1535/8 −605/8 95/8 −5/8 ; 1975/957

−57/64 183/64 51/64 3/64 0 0 0 0 50 −18 −2 2 ; 2063/965

1415/9 −247/3 163/9 −1/9 −2339/648 187/216 −43/648 1/648 1648/243 −236/81 128/243 −8/243 ; 1313/3140

−62/45 34/25 −32/225 −64/225 66311/648 −10759/216 5479/648 323/648 11695/216 −935/72 215/216 −5/216 ; 803/245

809/192 −77/64 95/64 109/192 16/81 −8/27 32/81 16/81 −30 82/3 −16 4 ; 5293/1282

65 −65/3 −7 5 −109/324 −67/108 −29/324 −1/324 2372/243 −268/81 100/243 −4/243 ; 677/3141

146/45 −266/75 806/225 −338/225 131/4 −91/12 −71/12 29/12 545/216 335/72 145/216 5/216 ; 247/48

−1513/576 207/64 −893/576 1043/576 −4/3 4/3 −4/3 4/3 −820/9 64 −260/9 56/9 ; 1085/176

−295/3 87 −155/3 41/3 3/8 −1/8 −5/8 −1/8 4 0 0 0 ; 198/1745

186/5 −718/25 396/25 −108/25 −8189/216 2509/72 −4237/216 847/216 −15/8 5/8 25/8 5/8 ; 2065/264

−4111/192 1035/64 −1595/192 725/192 −664/27 176/9 −320/27 128/27 −470/3 106 −136/3 28/3 ; 3581/427



From Eq.(19), the matrix form for initial conditions is computated as

[U,α ] =



4 0 0 0 0 0 0 0 0 0 0 0 : 0

−30 10 0 0 0 0 0 0 0 0 0 0 ; 1

0 0 0 0 4 0 0 0 0 0 0 0 ; 1

0 0 0 0 −30 10 0 0 0 0 0 0 ; 0

0 0 0 0 0 0 0 0 4 0 0 0 ; 1

0 0 0 0 0 0 0 0 −30 10 0 0 ; 1


Hence, the new augmented matrix based on conditions from systems (20) can be obtained as follows

[
W̃;G̃

]
=



225 −123 33 −3 0 0 0 0 0 0 0 0 ; 501/1045

0 0 0 0 345/2 −183/2 45/2 −3/2 1535/8 −605/8 95/8 −5/8 ; 1975/957

−57/64 183/64 51/64 3/64 0 0 0 0 50 −18 −2 2 ; 2063/965

1415/9 −247/3 163/9 −1/9 −2339/648 187/216 −43/648 1/648 1648/243 −236/81 128/243 −8/243 ; 1313/3140

−62/45 34/25 −32/225 −64/225 66311/648 −10759/216 5479/648 323/648 11695/216 −935/72 215/216 −5/216 ; 803/245

809/192 −77/64 95/64 109/192 16/81 −8/27 32/81 16/81 −30 82/3 −16 4 ; 5293/1282

4 0 0 0 0 0 0 0 0 0 0 0 ; 0

−30 10 0 0 0 0 0 0 0 0 0 0 ; 1

0 0 0 0 4 0 0 0 0 0 0 0 ; 1

0 0 0 0 −30 10 0 0 0 0 0 0 ; 0

0 0 0 0 0 0 0 0 4 0 0 0 ; 1

0 0 0 0 0 0 0 0 −30 10 0 0 ; 1



By solving this system, substituting the resulting unknown Chelyshkov coefficients matrix into Eq.(6) we obtain the

approximation solutions for N = 3 as

y1,3(t) =−0.156386235379089t3 +0.005133416233467t2 + t,

y2,3(t) =−0.097456081339467t3 −0.464896366222704t2 +1,

y1,3(t) = 0.279477737475736t3 +0.417618458568886t2 + t +1.

By the help of similar process for N = 5, 8 we get the approximate solutions, respectively, as

y1,5(t) = 0.008078454628850t5 −0.000339763804079t4 −0.166614138413128t3 +0.000399275674599t2 + t,

y2,5(t) =−0.005373175038781t5 +0.047460754150710t4 −0.002908215549952t3 −0.499185094547048t2 +1,

y3,5(t) = 0.015287450418155t5 +0.031198830705710t4 +0.17387878980801t3 +0.497429866377082t2 + t +1,
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and
y1,8(t) =−0.00000321590510t8 −0.00018333553615t7 +0.000005602017367t6

+0.00831597785561t5 −0.0000075041566t4 −0.1666612290552t3 +0.0000029953989t2 + t,

y2,8(t) = 0.000004923437t8 +0.0000461166447t7 −0.00143061106296t6

+0.000023279619900t5 +0.0416575434086t4 −4.569431 10−7t3 −0.49999934365088t2 +1,

y3,8(t) = 0.000050736208t8 +0.00012301814685t7 +0.001494329017229t6

+0.0082608026944t5 +0.416841051499t4 +0.1666722645286t3 +0.4999953383022t2 +1.

Tables 1-3 show the comparison of some numerical values of the absolute errors of Chelyshkov polynomial solutions for

N = 3,5,8 and 11 , and also Figs 1a, 1b and 1c display the exact and approximate solutions of Eq. (22). From tables, we

see that the errors decrease rapidly as N increases.

Table 1: Comparisons of the absolute error functions E1,N(t) of Eq. (22).

ti N=3 N=5 N=8 N=11
|e1,3(ti)| |e1,5(ti)| |e1,8(ti)| |e1,11(ti)|

0,1 4,868153e-3 6,500758e-5 2,858860e-8 6,336130e-10
0,3 1,922352e-3 2,566262e-5 1,134936e-8 1,181050e-10
0,5 1,134043e-2 2,282453e-5 1,038000e-12 2,300859e-9
0,7 1,237158e-2 3,069425e-5 8,407349e-8 1,135740e-8
0,9 3,262414e-2 8,356441e-4 7,440406e-6 1,591974e-7

Table 2: Comparisons of the absolute error functions E2,N(t) of Eq. (22).

ti N=3 N=5 N=8 N=11
|e2,3(ti)| |e2,5(ti)| |e2,8(ti)| |e2,11(ti)|

0,1 3,918014e-2 8,732413e-5 4,219270e-9 1,11890e-10
0,3 1,521920e-2 4,580208e-5 1,388750e-9 3,88928e-10
0,5 1,131821e-1 6,625824e-5 4,100000e-12 1,77634e-9
0,7 3,044190e-1 4,012964e-4 5,188580e-9 4,54605e-9
0,9 5,121444e-1 3,136185e-3 2,056825e-7 1,99394e-9

Table 3: Comparisons of the absolute error functions E3,N(t) of Eq. (22).

ti N=3 N=5 N=8 N=11
|e3,3(ti)| |e3,5(ti)| |e3,8(ti)| |e3,11(ti)|

0.1 2,794883e-2 1,857134e-4 1,611955e-8 4,598110e-9
0.3 1,272921e-2 1,083602e-4 6,474959e-9 2,462238e-8
0.5 1,167859e-1 1,767717e-4 2,485630e-10 1,226285e-7
0.7 4,076591e-1 1,219935e-3 5,036500e-8 4,906619e-7
0.9 9,376063e-1 1,091131e-2 4,402593e-6 1,618757e-6
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(a) Comparison of the exact solution sin t and the approximate
solutions y1,N(t)

(b) Comparison of the exact solution et and the approximate
solutions y3,N(t)

(c) Comparison of the exact solution cos t and the approximate
solutions y2,N(t)

Fig. 1: Graphs of exact and numerical solutions of equation (22) for N = 3,5,8 and 11.

Example 2. [24]. Let us consider system of the linear differential difference equations with variable coefficients given by

{
y1

(2)(t)− y1(t)+ y2(t)− y1(t −0.2) =−et−0.2 + e−t

y2
(2)(t)+ y1(t)− y2(t)− y2(t −0.2) = e−t+0.2 + et ,

0 ≤ t ≤ 1 (23)

with the initial conditions y1(0) = 1,y′1(0) = 1,y2(0) = 1,y′2(0) =−1 and the exact solutions y1(t) = et ,y2(t) = e−t . Here,

Q0
1,1(t) =−1,Q0

1,2(t) = 1,Q0
2,1(t) = 1,Q0

2,2(t) =−1,Q2
1,1(t) = 1,Q2

1,2(t) = 0 = Q2
2,1(t),Q

2
2,2(t) = 1,

P0,0
1,1 (t) =−1,P0,0

1,2 (t) = 0,P0,0
2,1 (t) = 0,P0,0

2,2 (t) =−1,g1(t) =−et−0.2 + e−tandg2(t) = e−t+0.2 + et .

From Eq.(16), the fundamental matrix equation of the problem is

{Q0 TC+P00TM1,−0.2C+Q2TB2C}A = G.
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Using the procedure in Section 3, we get the approximate solutions by the Chelyshkov polynomials of the problem for

N = 3,6,10
y1,3(t) =−0.158267390000000t3 + t,

y2,3(t) = 0.031898368270000t3 −0.54t2 +1,

y1,6(t) =−0.000969835545673t6 +0.007944669136359t5 −0.000472361651851t4

−0.173874073649937t3 + t,

y2,6(t) = 0.004574729687886t6 +0.003147215190958t5 +0.040559771740590t4

−0.007110146730438t3 −0.5t2 +1,

and
y1,10(t) =−0.000107408790171t10 +0.000326131441025t9 −0.000484626701101t8

+0.00165892945991t7 −0.000163899026982t6 +0.007972064081813t5

−0.000007259719873t4 −0.168699403354326t3 + t,

y2,10(t) =−0.000512184619072t10 +0.001150293165116t9 −0.001026116532671t8

+0.000310064322725t7 −0.0016848497042t6 +0.000180118015455t5

+0.041654471237032t4 −0.002032382364153t3 −0.5t2 +1.

Table 4: Numerical results of the exact and the approximate solutions y1,N(t) for N=3,6,10.

ti Exact Value Approximation solutions
eti y1,3(ti) y1,6(ti) y1,10(ti)

0.1 1.10517091807565 1.1051964699464 1,105170903152 1,10517091807564
0.3 1.34985880757600 1.3503336525308 1,349858707756 1,34985880757562
0.5 1.64872127070013 1.6497196542882 1,648721089989 1,64872127070873
0.7 2.01375270747048 2.0128622699197 2,013752462911 2,01375270751456
0.9 2.45960311115695 2.4492692941264 2,459601077725 2,45960311132513

Table 5: Numerical results of the exact and the approximate solutions y2,N(t) for N=3,6,10.

ti Exact Value Approximation solutions
e−ti y2,3(ti) y2,6(ti) y2,10(ti)

0.1 0.9048374180359 0.904856967280 9,048374264143 0,904837418036002
0.3 0.7408182206817 0.741162866226 7,408182774021 0,740818220680527
0.5 0.6065306597126 0.607258408138 6,065307651909 0,606530659695493
0.7 0.4965853037914 0.496344021556 4,965854570327 0,496585303678594
0.9 0.4065696597405 0.401620135023 4,065706243200 0,406569659073933

Table 6: The maximum errors E1,N(t) and E2,N(t) of Eq. (23).

N 3 6 10
E1,N(t) 1,0334e-2 2,0334e-6 1,6818e-10
E1,N(t) 4,9495e-3 9,6458e-7 6,6667e-10

In Tables 4 and 5, it is given a comparison of numerical results of the approximate solutions obtained by the presented

method for N = 3,6 and 10 with the exact solutions of Eq. (23). In addition, the absolute error functions are shown in
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Fig. 2. As seen from Table 6, the resulting solutions from Chelyshkov polynomial method for N = 10 are almost the same

as the results of the exact solutions and we see that the errors decrease rapidly as N increases.

(a) Comparison of the absolute errors functions e1,N(t) for
N = 3,6 and 10

(b) Comparison of the absolute errors functions e2,N(t) for
N = 3,6 and 10

Fig. 2: The Graph of the function in equation (23) for N = 3,6 and 10.

Example 3. [25]. Let us consider the system of initial value problems given by

y′1(t −1)+ y′2(t −1) = 2t, y1(0) = 0

y′1(t −1)− y′3(t −1) = 2t −1, y2(0) = 0, 0 ≤ t ≤ 1

y′1(t −1)+ y3(t −1) = t −1, y3(0) = 0

(24)

Using the present method for N = 3 as in Example 1, we obtain solutions of the problem as

y1(t) = t2,y2(t) = 2t and y3(t) =−t which are the exact solutions. Moreover, if higher values of N be chosen, we obtain

the exact solution again.

5 Conclusions

In this paper, we have presented a new collocation method and used it for the systems of the mentioned linear functional

differential equations with variable coefficients. The comparison of the results shows that the present method is a powerful

mathematical tool for finding the numerical solutions of these type systems. One of the considerable advantages of the

method is that the approximate solutions are found very easily by using avaible software such as maple or matlab since the

method is based on matrix operations. Moreover, the method proposed in this work can be extended to solve the systems

of nonlinear equations which play an important role in physics and engineering.
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