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Abstract: Laplace equation is a fundamental equation of applied mathematics. Important phenomena in engineering and physics, such
as steady-state temperature distribution, electrostatic potential and fluid flow, are modeled by means of this equation. The Laplace
equation which satisfies boundary values is known as the Dirichlet problem. The solutions to the Dirichlet problem form one of the
most celebrated topics in the area of applied mathematics. In this study, a novel method is presented for the solution of two-dimensional
heat equation for a rectangular plate. In this alternative method, the solution function of the problem is based on the Green function,
and therefore on elliptic functions.

Keywords: Heat equation, Dirichlet problem, elliptic functions, elliptic integral, green function.

1 Introduction

Laplace’s equation is one of the most significant equations in physics. It is the solution to problems in a wide variety of

fields including thermodynamics and electrodynamics. Today, the theory of complex variables is used to solve problems

of heat flow, fluid mechanics, aerodynamics, electromagnetic theory and practically every other field of science and

engineering. A broad class of steady-state physical problems can be reduced to finding the harmonic functions that

satisfy certain boundary conditions. The Dirichlet problem for the Laplace equation is one of the above mentioned

problems.

The Dirichlet problem is to find a function U(z)that is harmonic in a bounded domain D ⊂ R2, is continuous up to the

boundary ∂Dof D, assumes the specified values U0(z) on the boundary ∂D, where U0(z) is a continuous function on ∂D,

and can be formulated as

∇2U = 0 , z ∈ D , U |
z∈∂D

=U0(z) (1)

Here, for a point (x,y) in the plane R2, one takes the complex notation z = x+ iy, U(z) =U(x,y) and U0(z) =U0(x,y) are

real functions and ∇2 = ∂ 2

∂x2 +
∂ 2

∂y2 is the Laplace operator. Similarly the Dirichlet problem for the Poisson equation can be

formulated as

∇2U = h(z) , z ∈ D , U |
z∈∂ D

=U0(z) (2)

Brovar et al. [1] investigated the relation between the Dirichlet problem and the Cauchy problem. Sezer [2] developed a

new method for the solution of Dirichlet problem. Lanzara [3] studied Dirichlet problem for second degree elliptic linear
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equations with limited and measurable coefficients. The dependence upon variations of problem data of the solution of

two-dimensional Dirichlet boundary value problem for simply connected regions was investigated [4]. Han and Hasebe

[5] derived Green’s function for a thermomechanical mixed boundary value problem of an infinite plane with an elliptic

hole under a pair of heat source and sink. In another study, Han and Hasebe [6] also reviewed Green’s functions for a

point heat source in various thermoelastic boundary value problems for an infinite plane with an inhomogeneity. Green

function of the Dirichlet problem for the Laplace differential equation in a rectangular domain was expressed in terms of

elliptic functions and the solution of the problem was based on the Green function and therefore on elliptic functions by

Kurt et al. [7]. Hsiao and Saranen [8] showed an equivalence between the weak solution and the various boundary

integral solutions, and described a coupling procedure for an exterior initial boundary value problem for the

nonhomogeneous heat equation. The problem of the one-dimensional heat equation with nonlinear boundary conditions

was studied by Tao [9]. Hansen [10] studied a boundary integral method for the solution of the heat equation in an

unbounded domain D in R2. The application of spectral methods for solving the one-dimensional heat equation was

presented by Saldana et al. [11]. Al-Najem et al. [12] estimated the surface temperature in two-dimensional steady-state

in a rectangular region by two different methods, the singular value decomposition with boundary element method and

the least-squares approach with integral transform method. The Green function of the Dirichlet problem for the Laplace

differential equation in a triangle region was expressed in terms of elliptic functions and the solution of problem was

based on the Green function, and therefore on elliptic functions by Kurt and Sezer [13]. Green function of the

two-dimensional heat equation in a square region was expressed in terms of elliptic functions and the solution of the

problem was based on the Green function and therefore on elliptic functions by Kurt [14]. Least Square Method (LSM),

Collocation Method (CM) and a new approach which is called Akbari-Ganji’s Method (AGM) are applied to solve the

nonlinear heat transfer equation of fin with power-law temperature-dependent both thermal conductivity and heat

transfer coefficient by Ledari et al. [15].

As it is known, the solution of the Dirichlet problem by the method of separation of variables may be obtained only for a

restricted class of domains D with a sufficiently simple boundary ∂D. The conformal mappings yield a sufficiently

universal algorithm for the solution of the Dirichlet problem for two-dimensional domains. These permit constructing a

Green function of the Dirichlet problem for the Laplace (and Poisson) equation in a Dconformally mapped onto the unit

circle or upper half-plane, and cannot be obtained in terms of elliptic functions.

Our purpose in this paper is, first, to determine the analytic function which maps the rectangular domain D onto the

upper half-plane or the unit circle in terms of elliptic functions using the Schwarz-Christoffel transformation and

conformal mapping, and then, to find the solution of the Dirichlet problem for the rectangular domain in terms of elliptic

functions, by means of the relation between the obtained analytic function and the Green function.

2 Elliptic integrals and functions

The integral
t∫

0

dτ√
(1− τ2)(1− k2τ2)

=

u∫
0

du1 = u = sn−1(t,k) = F(ϕ ,k) t = sinϕ (3)

is called the normal elliptic integral of the first kind, where k, (0 < k < 1)is any number. When t = 1, Eq. (3) is said to be

complete and becomes
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t∫
0

dτ√
(1− τ2)(1− k2τ2)

=

K∫
0

du1 = F
(π

2
,k
)
≡ K(k)≡ K (4)

or
t∫

0

dτ√
(1− τ2)(1− k2τ2)

=

K∫
0

du1 = F
(π

2
,k′

)
≡ K′(k)≡ K(k′)≡ K′ (5)

Here, the number k is the modulus and k′, (0 < k′ < 1) is the complementary modulus, such that k′2 = 1− k2. If k = 0 in

Eq. (3), one finds that u = sin−1 t or t = sinu. Whenk ̸= 0, the integral (3) is denoted by u = sn−1(t,k) or briefly u = sn−1t

or t = snu. The function snu is called Jacobian elliptic function. Two other Jacobian elliptic functions can be defined by

cn(u,k) = (1− k2)
1/2., dn(u,k) = (1− k2sn2u)

1/2.

3 The conform mapping of a rectangular domain

Let apply the transformation z1 = z+ a+ ib to carry the rectangle onto the first quadrant. The functionζ1 = snλ z, with

λ = K/2a = K′/2b, maps the rectangle onto the first quadrant of the ζ1−plane. The function ζ = ζ 2
1 maps this quadrant

onto the upper half of the ζ−plane. The following table shows where the corresponding points lie in different planes

(including the final w-plane):

plane A B C D
z a ib −a −ib
z1 a+2ib a+2ib ib a
λ z1 K + iK′/2 K/2+ iK′ iK′/2 K/2
ζ1 1/

√
k

√
1+ k′/k i/

√
k 1/

√
1+ k′

ζ 1/k (1+ k′2 −1/k 1/(1+ k′)
w 1 i −1 −i

The last two rows define the bilinear transformation between the ζ− and the w−planes:

w−1
w+1

=−i
k+1+ k′

k−1− k′
kζ −1
kζ +1

(6)

That is,
w−1
w+1

= i

√
1+ k
1− k

kζ −1
kζ +1

(7)

On the other hand,
ζ = sn2

(
λ z+ K

2 + i K′
2

)
= sn2

[ 1
2 (2λ z+K + iK′)

]
= 1−cn(2λ z+K+iK′)

1+dn(2λ z+K+iK′) =
1+i(k′k)nc2λ z

1+ik′sc2λ z

(8)

Hence,
w−1
w+1

= i
−
√

1− kcn2λ z+ i
√

1+ k(1− sn2λ z)√
1+ kcn2λ z+ i

√
1− k(1+ sn2λ z)

w =

√
1+ k(cn2λ z+ sn2λ z−1)+ i

√
1− k(sn2λ z− cn2λ z+1)√

1+ k(cn2λ z− sn2λ z+1)+ i
√

1− k(sn2λ z+1)
(9)
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Multiply the numerator and denominator by the denominator with −i instead of i (not the conjugate!). Using 1− k2 = k
′2

and sn2 + cn2 = 1 and simplifying, we obtain:

w = sn2λ z
1+cn2λ z =

2snλ zcnλ zdnλ z
cn2λ z+sn2λ zdn2λ z

= cn2λ z+sn2λ zdn2λ z
cn2λ z+sn2λ zdn2λ z+cn2λ z−sn2λ zdn2λ z

= snλ zdnλ z
cnλ z = scλ zdnλ z

(10)

The conformal mapping of the rectangle given in the z-plane onto the unit circle |w|< 1 in the w−plane can be written as

w = F(z) = scλ zdnλ z scz =
snz
cnz

(11)

4 Determination of green function

Green function G(z,ζ ) of the Dirichlet problem for the Laplace equation in the domain D is defined by

G(z,ζ ) =
1

2π
ln |z−ζ |+g(z,ζ ) z ∈ D , ζ ∈ D (12)

where g is a harmonic function in D for each ζ ∈ D and g(z,ζ ) = −1/(2π) ln |z−ζ | then G(z,ζ ) = 0, for each

z ∈ ∂D, z = x+ iy and ζ = ξ + iη .

When the domain Dis simply connected, the determination of the mentioned Green function can be reduced to the

problem of determining an analytic function which specifies a mapping of D onto the upper half-plane ImW > 0 or the

unit circle |w| < 1. This is because W = F(z) is an analytic function which maps the domain D in the z-plane onto the

upper half-plane of the W−plane, with F ′(z) ̸= 0 in D then the mapping is one-to-one.

G =
1
2

ln

∣∣∣∣∣F(z)−F(ζ )
F(z)−F(ζ )

∣∣∣∣∣ , z = x+ iy , ζ = ξ + iη (13)

and, if the analytic function W = F(z) maps D onto the unit circle |w| < 1, then the Green function of the Dirichlet

problem for the Laplace operator in D becomes

G(z,ζ ) =
1

2π
ln |w(z−ζ )| , W (z,ζ ) =

F(z)−F(ζ )
1−F(z)F(ζ )

(14)

Consequently, if one takes D as the rectangleA1

(
K
2λ ,−

K′
2λ

)
,A2

(
K
2λ ,

K′
2λ

)
, A3

(
− K

2λ ,
K′
2λ

)
, A4

(
− K

2λ ,−
K′
2λ

)
then from Eqs.

(12) and (14), the Green function for the rectangle is found in the form

G =
1

2π
ln
∣∣∣∣ scλ zdnλ z− scλζ dnζ z

1− scλ zdnλ z scλζ dnζ

∣∣∣∣= 1
2π

Re ln
[

scλ zdnλ z− scλζ dnζ z

1− scλ zdnλ z scλζ dnζ

]
(15)

5 The solution of the Dirichlet problem

The solution of the Dirichlet problem for the Poisson equation (2) in D can be obtained as

U(z) =
∫
D

∫
G(z,ζ )h(ζ )dξ dη +

∫
∂D

G(z,ζ )
∂n

U0(ζ ) |dζ | (16)
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where G is the Green function for the domain D and ∂/∂n denotes differentiation along an outward normal to the

boundary ∂D of D with respect to ζ .

Taking the domain D as the rectangle A1

(
K
2λ ,−

K′
2λ

)
,A2

(
K
2λ ,

K′
2λ

)
, A3

(
− K

2λ ,
K′
2λ

)
, A4

(
− K

2λ ,−
K′
2λ

)
and the boundary ∂D

of D as the circumference ∂D = A4A1 ∪A1A2 ∪A2A3 ∪A3A4, one may write the conditions

1. η =− K′
2λ , dη = 0 , − K

2λ ≤ ξ ≤ K
2λ on A4A1

2. ξ = K
2λ , dξ = 0 , − K′

2λ ≤ η ≤ K′
2λ on A1A2

3. η = K′
2λ , dη = 0 , − K

2λ ≤ ξ ≤ K
2λ on A2A3

4. ξ =− K
2λ , dξ = 0 , − K′

2λ ≤ η ≤ K′
2λ on A3A4

Thus, from Eq. (16), the solution of Eq. (2) in the above rectangle becomes

U(z) =

K′
2λ∫

− K′
2λ

K
2λ∫

− K
2λ

G(z,ζ )h(ζ )dξ dη −
− K

2λ∫
− K

2λ

[
G2

ξ (z,ζ )+G2
η(z,ζ )

]1/2 U0(ζ )|
− K′

2λ
η=− K′

2λ
dξ

+

K′
2λ∫

− K′
2λ

[
G2

ξ (z,ζ )+G2
η(z,ζ )

]1/2 U0(ζ )|
K
2λ

ξ=− K
2λ

dη (17)

In the case of h(z) = 0, the solution of the Dirichlet problem for the Laplace differential equation (1) in the above rectangle

is obtained in terms of elliptic functions as :

U(z) =

K′
2λ∫

− K′
2λ

[
G2

ξ +G2
η

]1/2 U0(ζ )|
K
2λ
ξ=− K

2λ
dη −

K
2λ∫

− K
2λ

[
G2

ξ +G2
η

]1/2 U0(ζ )|
K′
2λ
η=− K′

2λ
dξ (18)

where the Green function G is defined by

G =
1

2π
Re ln

[
scλ zdnλ z− scλζ dnλζ

1− scλ zdnλ z scλζ dnλζ

]
, z = x+ iy , ζ = ξ + iη

according to Eq. (14). The boundary values K(k) and K′(k) are the complete elliptic integrals and are tabulated for the

range k(0 < k < 1).

6 Illustrative application

In this section, an illustrative example is given. The boundary of a rectangular sheet of metal is kept at constant temperature

500C on the upper edge, 200C on the bottom edge, and 00C on the other two edges. After a sufficient period of time,

the temperature inside the plate reaches an equilibrium distribution. This steady-state temperature distribution U(x,y) is

determined in this application. Since no heat sources are present in the plate, the steady-state temperature U must satisfy

Uxx(x,y)+Uyy(x,y) = 0,
(
− K

2λ
≤ x ≤ K

2λ
, − K′

2λ
≤ y ≤ K′

2λ

)
(19)
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The boundary conditions are

U
(

x,− K′
2λ

)
= 200C, U

(
x, K′

2λ

)
= 500C, − K

2λ ≤ x ≤ K
2λ

U
(
− K

2λ ,y
)
=U

( K
2λ ,y

)
= 00C, − K′

2λ ≤ y ≤ K′
2λ

(20)

The solution of U(x,y) with two real variables satisfying the above conditions by the method of separation variables is

Us(x,y) =
4
π

∞

∑
k=1

(
1

2k−1
sinh(2k−1)πx/K

sinh(2(2k−1))πK′/K
sin

(2k−1)πy
K

)
(21)

where k = (n+1)
/

2, n = 1,2, ... On the other hand, the solution of the

UE(z) =

K′
2λ∫

− K′
2λ

[
G2

ξ +G2
η

]1/2 U0(ζ )|
K
2λ
ξ=− K

2λ
dη −

K
2λ∫

− K
2λ

[
G2

ξ +G2
η

]1/2 U0(ζ )|
K′
2λ
η=− K′

2λ
dξ (22)

=

K′
2λ∫

− K′
2λ

[
G2

ξ +G2
η

]1/2U0
( K

2λ ,η
)

dη −
K′
2λ∫

− K′
2λ

[
G2

ξ +G2
η

]1/2U0
(
− K

2λ ,η
)

dη

−
K
2λ∫

− K
2λ

[
G2

ξ +G2
η

]1/2U0

(
ξ , K′

2λ

)
U0(ζ )dξ +

K
2λ∫

− K
2λ

[
G2

ξ +G2
η

]1/2U0

(
ξ ,− K′

2λ

)
dξ

where

U
(

ξ ,− K′

2λ

)
= 200C, U

(
ξ ,

K′

2λ

)
= 500C, U

(
− K

2λ
,η

)
=U

(
K
2λ

,η
)
= 00C (23)

Substituting the conditions (23) into Eq. (22) yields

UE(z) =−50

K
2λ∫

− K
2λ

[
G2

ξ +G2
η

]1/2dξ +20

K
2λ∫

− K
2λ

[
G2

ξ +G2
η

]1/2dξ

where

G =
1

2π
ln
∣∣∣∣ scλ zdnλ z− scλζ dnζ z

1− scλ zdnλ z scλζ dnζ

∣∣∣∣
7 Discussion

The most significant advantage of present method is that the result is obtained in terms of elliptic functions; because

expressing the result in terms of elliptic functions facilitates many physics and engineering problems. An alternative

method is presented for the solution of two-dimensional heat equation for a rectangular plate. Following the way in the

present paper, the heat equation in similar plates, namely the ellipse, square and polygon plates, can be solved in terms of

elliptic functions; thus, a major contribution can be made to the solution of similar problems in physics and engineering.
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