

The best approximation of metric *P* –space of χ^2 –defined by Musielak

N. SUBRAMANIAN¹, N. SAIVARAJU², S. VELMURUGAN³

¹Department of Mathematics, SASTRA University, Thanjavur-613 401, INDIA

^{2, 3} Department of Mathematics, Sri Angalamman College of Engineering and Technology, Trichirappalli-621 105, INDIA E- mail: nsmaths@yahoo.com, saivaraju@yahoo.com, ksvelmurugan.09@gmail.com

Abstract: In this paper, we introduce the idea of constructing sequence space χ^2 of best approximation in *p*-metric defined by Musielak and also construct some general topological properties of approximation of χ^2 .

Keywords: Analytic sequence, modulus function, double sequences χ^2 space, Musielak - modulus function, p –metric space p –best approximation, p –orthogonality.

1 Introduction

Throughout w, χ and Λ denote the classes of all, gai and analytic scalar valued single sequences, respectively.

We write w^2 for the set of all complex sequences (x_{mn}) ; where $m, n \in N$, the set of positive integers. Then, w^2 is a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich [4]. Later on, they were investigated by Hardy [8], Moricz [16], Moricz and Rhoades [17], Basarir and Solankan [3], Tripathy [20], Turkmenoglu [21], and many others.

We procure the following sets of double sequences:

$$\begin{split} \mathcal{M}_{u}(t) &\coloneqq \left\{ (x_{mn}) \in w^{2} : \sup p_{m,n \in N} |x_{mn}|^{t_{mn}} < \infty \right\}, \\ \mathcal{C}_{p}(t) &\coloneqq \left\{ (x_{mn}) \in w^{2} : p - \lim p_{m,n \to \infty} |x_{mn} - 1|^{t_{mn}} = 1 \text{ for some } l \in \mathbb{C} \right\}, \\ \mathcal{C}_{0p}(t) &\coloneqq \left\{ (x_{mn}) \in w^{2} : p - \lim p_{m,n \to \infty} |x_{mn}|^{t_{mn}} = 1 \right\}, \\ \mathcal{L}_{u}(t) &\coloneqq \left\{ (x_{mn}) \in w^{2} : \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |x_{mn}|^{t_{mn}} < \infty \right\}, \\ \mathcal{C}_{bp}(t) &\coloneqq \mathcal{C}_{p}(t) \cap \mathcal{M}_{u}(t) \text{ and } \mathcal{C}_{0bp}(t) = \mathcal{C}_{0p}(t) \cap \mathcal{M}_{u}(t); \end{split}$$

where $t = (t_{mn})$ is the sequence of strictly positive reals t_{mn} for all $m, n \in N$ and $p - \lim_{m,n\to\infty}$ denotes the limit in the Pringsheim's sense. In the case $t_{mn} = 1$ for all $m, n \in N$; $\mathcal{M}_u(t), \mathcal{C}_p(t), \mathcal{C}_{0p}(t), \mathcal{L}_u(t), \mathcal{C}_{bp}(t)$ and $\mathcal{C}_{0bp}(t)$ reduce to the sets $\mathcal{M}_u, \mathcal{C}_p, \mathcal{C}_{0p}, \mathcal{L}_u, \mathcal{C}_{bp}$ and \mathcal{C}_{0bp} respectively. Now, we may summarize the knowledge given in some document related to the double sequence spaces. Gökhan and Colak [6,7] have proved that $\mathcal{M}_u(t)$ and $\mathcal{C}_p(t), \mathcal{C}_{bp}(t)$ are complete paranormed spaces of double sequences and gave the $\alpha -, \beta -, \gamma -$ duals of the spaces $\mathcal{M}_u(t)$ and $\mathcal{C}_{bp}(t)$. Quite recently, in her PhD thesis, Zelter [23] has essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences. Mursaleen and Edely [14] and Tripathy [20] have independently introduced the statistical convergence and Cauchy for double sequences and given the relation between statistical convergent and strongly Cesaro summable double sequences. Altay and Başar [1] have defied the spaces $\mathcal{BS}, \mathcal{BS}(t), \mathcal{CS}_p, \mathcal{CS}_{bp}, \mathcal{CS}_r$ and \mathcal{BV} of double sequences consisting of all double series whose sequence of partial sums are in the spaces $\mathcal{M}_u, \mathcal{M}_u(t), \mathcal{C}_p, \mathcal{C}_{bp}, \mathcal{C}_r$ and \mathcal{L}_u , respectively, and also examined some properties of those sequence spaces and determined the α – duals of the spaces $\mathcal{BS}, \mathcal{BV}, \mathcal{CS}_{bp}$ and $\beta(\vartheta)$ – duals of the spaces \mathcal{CS}_{bp} and \mathcal{CS}_r of double series. Başar and Sever [2] have introduced the Banach space \mathcal{L}_q of double sequences corresponding to the well-known space ℓ_q of single sequences and examined some properties of the space \mathcal{L}_q . Quite recently Subramanian and Misra [19] have studied the space $\chi^2_M(p,q,u)$ of double sequences and gave some inclusion relations.

The class of sequences which are strongly Cesaro summable with respect to a modulus was introduced by Maddox [15] as an extension of the definition of strongly Cesaro summable sequences. Cannor [5] further extended this definition to a definition of strong A – summability with respect to a modulus where $A = (a_{n,k})$ is a nonnegative regular matrix and established some connections between strong A – summability, strong A – summability with respect to a modulus, and A – statistical convergence. In [24] the notion of convergence of double sequences was presented by A. Pringsheim. Also, in [9]-[10], and [11] the four dimensional matrix transformation $(Ax)_{k,l} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{kl}^{mn} x_{mn}$ was studied extensively by Robison and Hamilton.

We need the following inequality in the sequel of the paper. For $a, b \ge 0$ and 0 , we have

$$(a+b)^p \le a^p + b^p$$

The double series $\sum_{m,n=1}^{\infty} x_{mn}$ is called convergent if and only if the double sequence (s_{mn}) is convergent, where $s_{mn} = \sum_{i,j=1}^{m,n} x_{ij} \ (m,n \in N)$.

A sequence $x = (x_{mn})$ is said to be double analytic if $\sup_{mn} |x_{mn}|^{1/m+n} < \infty$. The vector space of all double analytic sequences will be denoted by Λ^2 . A sequence $x = (x_{mn})$ is called double gai sequence if $((m+n)!|x_{mn}|)^{1/m+n} \rightarrow 0$ as $m, n \rightarrow \infty$. The double gai sequences will be denoted by χ^2 . Let $\phi = \{all \ finite \ sequences\}$.

Consider a double sequence $x = (x_{ij})$. The $(m, n)^{th}$ section $x^{[m,n]}$ of the sequence is defined by $x^{[m,n]} = \sum_{i,j=0}^{m,n} x_{ij} \mathfrak{F}_{ij}$ for all $m, n \in \mathbb{N}$; where \mathfrak{F}_{ij} denotes the double sequence whose only non zero term is a $\frac{1}{(i+j)!}$ in the $(i, j)^{th}$ place for each $i, j \in \mathbb{N}$.

An FK-space (or a metric space) X is said to have AK property if (\mathfrak{F}_{mn}) is a Schauder basis for X. Or equivalently $x^{[m,n]} \to x$.

An FDK-space is a double sequence space endowed with a complete metrizable; locally convex topology under which the coordinate mappings $x = (x_k) \rightarrow (x_{mn}) (m, n \in \mathbb{N})$ are also continuous.

Let *M* and ϕ are mutually complementary modulus functions. Then, we have

(i) For all $u, y \ge 0$,

 $uy \le M(u) + \Phi(y)$, (Young's inequality) [See[12]]

- (ii) For all $u \ge 0$,
- (iii) For all $u \ge 0$, and $0 < \lambda < 1$,

$$M(\lambda u) < \lambda M(u).$$

 $u\eta(u) = M(u) + \Phi(\eta(u)).$

Lindenstrauss and Tzafriri [13] used the idea of Orlicz function to construct Orlicz sequence space

$$\ell_{M} = \bigg\{ x \in w \colon \sum\nolimits_{k=1}^{\infty} M\left(\frac{|x_{k}|}{\rho}\right) < \infty \,, for \, some \, \rho > 0 \bigg\}.$$

The space ℓ_M with the norm

$$\|x\| = \inf\left\{\rho > 0: \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1\right\},\$$

becomes a Banach space which is called an Orlicz sequence space. For $M(t) = t^p$ ($1 \le p < 1$), the spaces ℓ_M coincide with the classical sequence space ℓ_p .

A sequence $f = (f_{mn})$ of modulus function is called a Musielak-modulus function. A sequence $g = (g_{mn})$ defined by

$$g_{mn}(v) = \sup\{|v|u - (f_{mn})(u): u \ge 0\}, m, n = 1, 2, \dots$$

is called the complementary function of a Musielak-modulus function f. For a given Musielak modulus function f, the Musielak-modulus sequence space t_f and its subspace h_f are defined as follows

$$\begin{split} t_f &= \big\{ x \in w^2 : I_f(|x_{mn}|)^{1/m+n} \to 0 \ as \ m, n \to \infty \big\}, \\ h_f &= \big\{ x \in w^2 : I_f(|x_{mn}|)^{1/m+n} \to 0 \ as \ m, n \to \infty \big\}, \end{split}$$

where I_f is a convex modular defined by

$$I_f(x) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f_{mn}(|x_{mn}|)^{1/m+n}, x = (x_{mn}) \in t_f.$$

We consider t_f equipped with the Luxemburg metric

$$d(x,y) = \sup_{mn} \left\{ \inf\left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f_{mn}\left(\frac{(|x_{mn}|)^{1/m+n}}{mn}\right)\right) \le 1 \right\}$$

If *X* is a sequence space, we give the following definitions:

- (i) X' = the continuous dual of X;
- (ii) $X^{\alpha} = \left\{ a = (a_{mn}) : \sum_{m,n=1}^{\infty} |a_{mn} x_{mn}| < \infty, \text{ for each } x \in X \right\};$
- (iii) $X^{\beta} = \{a = (a_{mn}): \sum_{m,n=1}^{\infty} a_{mn} x_{mn} \text{ is convegent, for each } x \in X\};$
- (iv) $X^{\gamma} = \{a = (a_{mn}): sup_{mn} \ge 1 | \Sigma_{m,n=1}^{M,N} a_{mn} x_{mn} | < \infty, for each x \in X \};$
- (v) Let X be an FK –space $\supset \phi$; then $X^f = \{f(\mathfrak{F}_{mn}); f \in X'\};$
- (vi) $X^{\delta} = \{a = (a_{mn}): sup_{mn} | a_{mn} x_{mn} |^{1/m+n} < \infty, for each x \in X\};$

 $X^{\alpha}, X^{\beta}, X^{\gamma}$ are called $\alpha - (\text{orK\"othe} - \text{Toeplitz})$ dual of $X, \beta - (\text{or generalized} - \text{K\"othe} - \text{Toeplitz})$ dual of $X, \gamma - \text{dual of } X, \delta - \text{dual of } X$ respectively. X^{α} is defined by Gupta and Kamptan [13]. It is clear that $X^{\alpha} \subset X^{\beta}$ and $X^{\alpha} \subset X^{\gamma}$, but $X^{\beta} \subset X^{\gamma}$ does not hold, since the sequence of partial sums of a double convergent series need not to be bounded.

The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz as follows

$$Z(\Delta) = \{x = (x_k) \in w : (\Delta x_k) \in Z\}$$

for Z = c, c_0 and ℓ_{∞} where $\Delta x_k = x_k - x_{k+1}$ for all $k \in \mathbb{N}$.

Here $Z = c, c_0$ and ℓ_{∞} denote the classes of convergent, null and bounded sclar valued single sequences respectively. The difference sequence space bv_p of the classical space ℓ_p is introduced and studied in the case $1 \le p \le \infty$ by Başar and Altay and in the case $0 by Altay and Başar in [1]. The spaces <math>c(\Delta), c_0(\Delta), \ell_{\infty}(\Delta)$ and bv_p are Banach spaces normed by

$$||x|| = |x_1| + \sup_{k \ge 1} |\Delta x_k|$$
 and $||x||_{bv_p} = \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/p}$, $(1 \le p \le \infty)$.

Later on the notion was further investigated by many others. We now introduce the following difference double sequence spaces defined by

$$Z(\Delta) = \{ x = (x_{mn}) \in w^w : (\Delta x_{mn}) \in Z \},\$$

where $Z = \Lambda^2$, χ^2 and $\Delta x_{mn} = (x_{mn} - x_{mn+1}) - (x_{m+1n} - x_{m+1n+1}) = x_{mn} - x_{mn+1} - x_{m+1n+1} + x_{m+1n+1}$ for all $m, n \in \mathbb{N}$.

2. Definition and Preliminaries

Let $n \in \mathbb{N}$ and X be a real vector space of dimension w, where $n \le w$. A real valued function $d_p(x_1, \dots, x_n) = ||d_1(x_1), \dots, d_n(x_n)||_p$ on X satisfying the following four conditions:

- (ii) $||d_1(x_1), ..., d_n(x_n)||_p$ is invariant under permutation,
- (iii) $\|\alpha d_1(x_1), \dots, d_n(x_n)\|_p = |\alpha| \|d_1(x_1), \dots, d_n(x_n)\|_p, \alpha \in \mathbb{R}$

(iv)
$$d_n((x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)) = (d_x(x_1, x_2, \dots, x_n)^p + d_y(y_1, y_2, \dots, y_n)^p)^{1/p}$$
 for $1 \le p \le \infty$; (or)

(v) $d((x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)) := \sup\{d_X(x_1, x_2, \dots, x_n), d_Y(y_1, y_2, \dots, y_n)\},\$

for $x_1, x_2, ..., x_n \in X, y_1, y_2, ..., y_n \in Y$ is called the *p* product metric of the Cartesian product of *n* metric spaces is the *p* norm of the *n*-vector of the norms of the *n* subspaces.

A trivial example of *p* product metric of *n* metric space is the *p* norm space is $X = \mathbb{R}$ equipped with the following Euclidean metric in the product space is the *p* norm:

$$\|d_{1}(x_{1}), \dots, d_{n}(x_{n})\|_{E} = \sup(|det(d_{mn}(x_{mn}))|) = \sup\left(\begin{vmatrix} d_{11}(x_{11}) & d_{12}(x_{12}) & \dots & d_{1n}(x_{1n}) \\ d_{21}(x_{21}) & d_{22}(x_{22}) & \dots & d_{2n}(x_{1n}) \\ \vdots & \vdots & \vdots & \vdots \\ d_{n1}(x_{n1}) & d_{n2}(x_{n2}) & \dots & d_{nn}(x_{nn}) \end{vmatrix}\right)$$

where $x_i = (x_{i1}, \dots, x_{in}) \in \mathbb{R}^2$ for each $i = 1, 2, \dots, n$.

If every Cauchy sequence in X converges to some $L \in X$, then X is said to be complete with respect to the p – metric. Any complete p – metric space is said to be p – Banach metric space.

Let $(X, ||d(x_1), d(x_2), \dots, d(x_{n-1})||_p)$ be an p - metric space and W_1, W_2, \dots, W_p be p - subspaces of X. A map $f: W_1 \times W_2 \times W_3 \times \dots \times W_p \to \mathbb{R}$ is called p - functional on $W_1 \times W_2 \times W_3 \times \dots \times W_p$, whenever for all $x_{11}, x_{12}, x_{13}, \dots, x_{1n} \in W_1, x_1, x_{22}, x_{23}, \dots, x_{2n} \in W_2, \dots, x_{n1}, x_{n2}, x_{n3}, \dots, x_{nn} \in W_p$ and $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{R}$.

(i)
$$f\begin{pmatrix} x_{11} + x_{12} + \dots + x_{1n} \\ x_{21} + x_{22} + \dots + x_{2n} \\ \vdots & \vdots & \vdots \\ x_{n1} + x_{n2} + \dots + x_{nn} \end{pmatrix}$$

(ii)
$$f\begin{pmatrix} \lambda_1 x_{11} & \lambda_1 x_{12} & \dots & \lambda_1 x_{1n} \\ \lambda_2 x_{21} & \lambda_2 x_{22} & \dots & \lambda_2 x_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \lambda_n x_{n1} & \lambda_n x_{n2} & \dots & \lambda_n x_{nn} \end{pmatrix} = (\lambda_1, \lambda_2, \dots, \lambda_n) f\begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{pmatrix}$$

Let $(X, ||d(x_1), d(x_2), ..., d(x_{n-1})||_p)$ be an p - metric space and $0 \neq u_2, u_3, ..., u_n \in X$ we denote by X_B^* the Banach metric space of all bounded functionals on $X \times \langle u_2 \rangle \times \langle u_3 \rangle \times ... \times \langle u_n \rangle$ where $\langle Z \rangle$ be the subspace of X generated by Z and $B = \{u_2, u_3, ..., u_p\}$.

A sequence (x_{mn}) in an p - metric space $(X, ||d(x_1), d(x_2), ..., d(x_{n-1})||_p)$ is said to converge in the p - metric if

$$\lim_{m,n\to\infty} \left(\left\| x_{mn}, \left(d(u_2), d(u_3), \dots, d(u_p) \right) \right\|_p \right) = 0,$$

for every $u_2, u_3, \dots, u_p \in X$.

Any complete p – metric space is said to be p – Banach metric space.

A sequence (x_{mn}) in an p – metric space $(X, ||d(x_1), d(x_2), ..., d(x_{n-1})||_p)$ is said to be Cauchy with respect to the p – metric if

$$\lim_{m,n,u,v\to\infty} \left(\left\| x_{mn} - x_{uv}, \left(d(u_2), d(u_3), \dots, d(u_p) \right) \right\|_p \right) = 0,$$

for every $u_2, u_3, \dots, u_p \in X$.

2.1. Definition. Let $(X, ||d(x_1), d(x_2), ..., d(x_{n-1})||_p)$ be an p – metric space we say that x is p – orthogonal to y if

$$\left\|x,\left(d(u_2),d(u_3),\ldots,d(u_p)\right)\right\|_p \leq \left\|x+\alpha y,\left(d(u_2),d(u_3),\ldots,d(u_p)\right)\right\|_p$$

for all $u_2, u_3, ..., u_p \in X, \alpha \in \mathbb{R}$ and we call x is p – orthogonal to y.

2.2. Definition. Let $(X, ||d(x_1), d(x_2), ..., d(x_{n-1})||_p)$ be an p – metric space, M a non-empty subspace of X and $x \in X$ then $g_0 \in M$ is called p – best approximation of $x \in X$ in M, if for every $g \in M$ and $u_2, u_3, ..., u_p \in X$.

$$\left\|x - g_0, \left(d(u_2), d(u_3), \dots, d(u_p)\right)\right\|_p \le \left\|x - g, \left(d(u_2), d(u_3), \dots, d(u_p)\right)\right\|_p$$

If for every $x \in X \setminus \overline{M}$ there exists at least one p – best approximation in M, then M is called p – proximinal subspace of X.

If for every $x \in X \setminus \overline{M}$ there exists a unique p – best approximation in M, then M is called an p –Chebyshev subspace of X.

For $x \in X$ we write,

$$P^p_M(x) = \{g_0 \in M : g_0 \text{ is an } p - best \text{ approximation of } x\}$$

2.3. Definition. Let $(X, ||d(x_1), d(x_2), ..., d(x_{n-1})||_p)$ be a real linear p – metric space and $w^2(X)$ denotes X – valued sequence space. Then for an Musielak modulus function $f = (f_{mn})$ we define the following sequence spaces for every every $u_2, u_3, ..., u_p \in X$:

$$\begin{split} & \left[\chi_{f}^{2}\right] \left\| \left(d(u_{2}), d(u_{3}), \dots, d(u_{p}) \right) \right\|_{p} = \\ & \left\{ x = (x_{mn}) \in w^{2}(X) : \lim_{m,n \to \infty} f\left(\left((m+n)! \, |x_{mn}| \right)^{1/m+n}, \left\| \left(d(u_{2}), d(u_{3}), \dots, d(u_{p}) \right) \right\|_{p} \right) = 0 \right\}, \\ & \left[\Lambda_{f}^{2}\right] \left\| \left(d(u_{2}), d(u_{3}), \dots, d(u_{p}) \right) \right\|_{p} = \\ & \left\{ x = (x_{mn}) \in w^{2}(X) : sup_{m,n} f\left(|x_{mn}|^{1/m+n}, \left\| \left(d(u_{2}), d(u_{3}), \dots, d(u_{p}) \right) \right\|_{p} \right) < \infty \right\}. \end{split}$$

Let *X* be a linear metric space. A function $w: X \to \mathbb{R}$ is called paranorm, if

- (1) $w(x) \ge 0$, for all $x \in X$;
- (2) w(-x) = w(x), for all $x \in X$;
- (3) $w(x+y) \le w(x) + w(y)$, for all $x, y \in X$;

(4) If (σ_{mn}) is a sequence of scalars with $\sigma_{mn} \to \sigma$ as $m, n \to \infty$ and (x_{mn}) is a sequence of vectors with $w(x_{mn} - x) \to 0$ as $m, n \to \infty$, then $w(\sigma_{mn}x_{mn} - \sigma x) \to 0$ as $m, n \to \infty$.

A paranorm w for which w(x) = 0 implies x = 0 is called total paranorm and the pair (X, w) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [22], Theorem 10.4.2, p.183).

The following inequality will be used throughout the paper. If $0 \le q_{mn} \le \sup q_{mn} = H, K = \max(1, 2^{H-1})$ then

$$|a_{mn} + b_{mn}|^{q_{mn}} \le K\{|a_{mn}|^{q_{mn}} + |b_{mn}|^{q_{mn}}\}$$

for all m, n and $a_{mn}, b_{mn} \in \mathbb{C}$. Also $|a|^{q_{mn}} \leq \max(1, |a|^H)$ for all $a \in \mathbb{C}$.

The main aim of this paper is to study some sequence spaces defined by a Musielakmodulus function over p –metric spaces also study some topological properties and some inclusion relations between these spaces.

3. Main Results

3.1.Theorem. Let $f = (f_{mn})$ be a Musielak-modulus function. Then then spaces $\left[X_{f}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]$ and $\left[\Lambda_{f}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]$ are linear spaces.

Proof: The proof is a routine verification and so omitted.

3.2. Theorem. Let $f = (f_{mn})$ be a Musielak-modulus function, $q = (q_{mn})$ be double analytic sequence of positive real numbers. Then then spaces $\left[X_f^{2q}, \left\|\left(d(u_2), d(u_3), \dots, d(u_p)\right)\right\|_p\right]$ is a paranormed space with respect to the paranorm defined by

$$g(x) = \inf f\left\{ \left(\left\| \left(d(u_2), d(u_3), \dots, d(u_p) \right) \right\|_p \right) \right\|_p^{q_{mn}} \right)^{1/H} \right\} \le 1,$$

where $H = max(1, sup_{mn}q_{mn} < \infty)$.

Proof: Clearly $g(x) \ge 0$ for $x = (x_{mn}) \in \left[X_f^{2q}, \left\|\left(d(u_2), d(u_3), \dots, d(u_p)\right)\right\|_p\right]$.

Since $f_{mn}(0) = 0$, we get g(0)

Conversely, suppose that g(x) = 0, then

$$\inf\left\{\left(\left[f_{mn}\left(\left\|X^{2}(x),\left(d(u_{2}),d(u_{3}),\ldots,d(u_{p})\right)\right\|_{p}\right)\right]^{q_{mn}}\right)^{1/H}\right\}\leq 1=0.$$

Suppose that $X^2(x) \neq 0$ for each $m, n \in \mathbb{N}$. Then $\left\|X^2(x), \left(d(u_2), d(u_3), \dots, d(u_p)\right)\right\|_p \to \infty$. It follows that

$$\left(\left[f_{mn}\left(\left\|X^{2}(x),\left(d(u_{2}),d(u_{3}),\ldots,d(u_{p})\right)\right\|_{p}\right)\right]^{q_{mn}}\right)^{1/H}\to\infty$$

which is a contradiction. Therefore $X^2(x) = 0$. Let

$$\left(\left[f_{mn}\left(\left\|X^{2}(x),\left(d(u_{2}),d(u_{3}),\ldots,d(u_{p})\right)\right\|_{p}\right)\right]^{q_{mn}}\right)^{1/H}\leq1$$

and

$$\left(\left[f_{mn}\left(\left\|X^{2}(y), \left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right)\right]^{q_{mn}}\right)^{1/H} \leq 1.$$

Then by using Minkowski's inequality, we have

$$\left(\left[f_{mn} \left(\left\| X^{2}(x+y), \left(d(u_{2}), d(u_{3}), \dots, d(u_{p}) \right) \right\|_{p} \right) \right]^{q_{mn}} \right)^{1/H} \leq \\ \left(\left[f_{mn} \left(\left\| X^{2}(x), \left(d(u_{2}), d(u_{3}), \dots, d(u_{p}) \right) \right\|_{p} \right) \right]^{q_{mn}} \right)^{\frac{1}{H}} + \\ \left(\left[f_{mn} \left(\left\| X^{2}(y), \left(d(u_{2}), d(u_{3}), \dots, d(u_{p}) \right) \right\|_{p} \right) \right]^{q_{mn}} \right)^{1/H}.$$

So we have

$$g(x + y) = \inf \left\{ \left(\left[f_{mn} \left(\left\| X^{2}(x + y), \left(d(u_{2}), d(u_{3}), \dots, d(u_{p}) \right) \right\|_{p} \right) \right]^{q_{mn}} \right)^{1/H} \le 1 \right\} \le \inf \left\{ \left(\left[f_{mn} \left(\left\| X^{2}(x), \left(d(u_{2}), d(u_{3}), \dots, d(u_{p}) \right) \right\|_{p} \right) \right]^{q_{mn}} \right)^{1/H} \le 1 \right\} + \inf \left\{ \left(\left[f_{mn} \left(\left\| X^{2}(y), \left(d(u_{2}), d(u_{3}), \dots, d(u_{p}) \right) \right\|_{p} \right) \right]^{q_{mn}} \right)^{1/H} \le 1 \right\}$$

Therefore,

$$g(x+y) \le g(x) + g(y).$$

Finally, to prove that the scalar multiplication is continuous. Let λ be any complex number. By definition,

$$g(\lambda \mathbf{x}) = \inf\left\{\left(\left[f_{mn}\left(\left\|X^{2}(\lambda \mathbf{x}), \left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right)\right]^{q_{mn}}\right)^{1/H} \leq 1\right\}$$

Then

$$g(\lambda x) = \inf \left\{ ((|\lambda|t)^{q_{mn}/H} : \left(\left[f_{mn} \left(\left\| X^2(\lambda x), \left(d(u_2), d(u_3), \dots, d(u_p) \right) \right\|_p \right) \right]^{q_{mn}} \right)^{1/H} \le 1 \right\}$$

where $t = \frac{1}{|\lambda|}$. Since $|\lambda|^{q_{mn}} \le max(1, |\lambda|^{supp_{mn}})$, we have

$$g(\lambda \mathbf{x}) \leq \max(1, |\lambda|^{supp_{mn}})$$

$$\inf \left\{ t^{q_{mn}/H} : \left(\left[f_{mn} \left(\left\| X^2(\lambda \mathbf{x}), \left(d(u_2), d(u_3), \dots, d(u_p) \right) \right\|_p \right) \right]^{q_{mn}} \right)^{1/H} \leq 1 \right\}$$

This completes the proof.

3.3. Theorem. The β – 1 dual space of

$$\left[X_{f}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]^{\beta} = \left[\Lambda_{f}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]^{\beta}$$

Proof: First, we observe that

$$\left[X_f^2, \left\| \left(d(u_2), d(u_3), \dots, d(u_p) \right) \right\|_p \right]^\beta \subset \left[\Gamma_f^2, \left\| \left(d(u_2), d(u_3), \dots, d(u_p) \right) \right\|_p \right].$$

Therefore

$$\left[\Gamma_{f}^{2}, \left\| \left(d(u_{2}), d(u_{3}), \dots, d(u_{p}) \right) \right\|_{p} \right]^{\beta} \subset \left[X_{f}^{2}, \left\| \left(d(u_{2}), d(u_{3}), \dots, d(u_{p}) \right) \right\|_{p} \right]^{\beta} .$$

$$But \left[\Gamma_{f}^{2} \right]^{\beta} \stackrel{\subset}{\neq} \left[\Lambda_{f}^{2}, \left\| \left(d(u_{2}), d(u_{3}), \dots, d(u_{p}) \right) \right\|_{p} \right] .$$

$$Hence$$

$$\left[\Lambda_{f}^{2}, \left\| \left(d(u_{2}), d(u_{3}), \dots, d(u_{p}) \right) \right\|_{p} \right] \subset \left[X_{f}^{2}, \left\| \left(d(u_{2}), d(u_{3}), \dots, d(u_{p}) \right) \right\|_{p} \right]^{\beta}$$

$$(3.1)$$

Next we show that

Let y

$$\begin{split} & \left[X_{f}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]^{\beta} \subset \left[\Lambda_{f}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right] \right] \\ &= (y_{mn}) \in \left[X_{f}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]^{\beta}. \end{split}$$

Consider $f(x) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} x_{mn} y_{mn}$ with $x = (x_{mn}) \in \left[X_f^2, \left\| \left(d(u_2), d(u_3), \dots, d(u_p) \right) \right\|_p \right]$

$$x = [(\lambda_{mn} - \lambda_{mn+1}) - (\lambda_{m+1n} - \lambda_{m+1n+1})]$$

$$= \begin{pmatrix} 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & & & & & \\ 0 & 0 & \dots & \frac{1}{(m+n)!} & \frac{-1}{(m+n)!} & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & & & & & \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & & & & & \\ f_{mn} \left(\left\| \left(d(u_2), d(u_3), \dots, d(u_p) \right) \right\|_p \right) \right] = \\ \begin{pmatrix} 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & & & & & \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & & & & & \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & f_{mn} \left(\frac{1}{(m+n)!} \right) & f_{mn} \left(\frac{-1}{(m+n)!} \right) & \dots & 0 \\ 0 & 0 & \dots & 0 & 0, & \dots & 0 \end{pmatrix}$$
 Hence converges to zero.

Therefore
$$[(\lambda_{mn} - \lambda_{mn+1}) - (\lambda_{m+1n} - \lambda_{m+1n+1})] \in [X_f^2, ||(d(u_2), d(u_3), ..., d(u_p))||_p].$$

Hence $d((\lambda_{mn} - \lambda_{mn+1}) - (\lambda_{m+1n} - \lambda_{m+1n+1}), 0) = 1.$

But $|y_{mn}| \leq ||f||d((\lambda_{mn} - \lambda_{mn+1}) - (\lambda_{m+1n} - \lambda_{m+1n+1}), 0) \leq ||f|| \cdot 1 < \infty$ for each m, n. Thus (y_{mn}) is a best approximation of p – metric double analytic sequence.

In other words
$$y \in \left[\Lambda_f^2, \left\| \left(d(u_2), d(u_3), \dots, d(u_p) \right) \right\|_p \right]$$
. But $y = (y_{mn})$ is arbitrary in $\left[X_f^2, \left\| \left(d(u_2), d(u_3), \dots, d(u_p) \right) \right\|_p \right]^{\beta}$.

Therefore

3.4.

$$\left[X_{f}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]^{\beta} \subset \left[\Lambda_{f}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]$$
(3.2)

From (3.1) and (3.2) we get

$$\begin{bmatrix} X_{f}^{2}, \left\| \left(d(u_{2}), d(u_{3}), \dots, d(u_{p}) \right) \right\|_{p} \end{bmatrix}^{p} = \begin{bmatrix} \Lambda_{f}^{2}, \left\| \left(d(u_{2}), d(u_{3}), \dots, d(u_{p}) \right) \right\|_{p} \end{bmatrix}$$

3.4. Theorem. The dual space of $\begin{bmatrix} X_{f}^{2}, \left\| \left(d(u_{2}), d(u_{3}), \dots, d(u_{p}) \right) \right\|_{p} \end{bmatrix}$ is $\begin{bmatrix} \Lambda_{f}^{2}, \left\| \left(d(u_{2}), d(u_{3}), \dots, d(u_{p}) \right) \right\|_{p} \end{bmatrix}$. In other words $\begin{bmatrix} X_{f}^{2}, \left\| \left(d(u_{2}), d(u_{3}), \dots, d(u_{p}) \right) \right\|_{p} \end{bmatrix}^{*} = \begin{bmatrix} \Lambda_{f}^{2}, \left\| \left(d(u_{2}), d(u_{3}), \dots, d(u_{p}) \right) \right\|_{p} \end{bmatrix}$.

Proof: We recall that $x_{mn} = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 & \dots \\ 0 & 0 & \dots & 0 & 0 & \dots \\ & & & & & & \\ & & & & & & \\ 0 & 0 & \dots & \frac{1}{(m+n)!} & 0 & \dots \\ & 0 & 0 & \dots & 0 & 0 & \dots \end{pmatrix}$

With $\frac{1}{(m+n)!}$ in the (m, n)th position and zero's else where, with

$$\left[X_{f}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right] = \begin{pmatrix} 0. & . & . & 0\\ . & & & \\ . & & & \\ 0 & f\left(\frac{1}{(m+n)!}\right)^{1/m+n} & & \\ 0 & f\left(\frac{1}{(m+n)!}\right)^{1/m+n} & & \\ 0 & & 0 \end{pmatrix}$$

which is a p – metric of double gai sequence. Hence,

$$x_{mn} \in \left[X_{f}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right] \cdot f(x) = \sum_{m,n-1}^{\infty} x_{mn} y_{mn}$$
with $x \in \left[X_{f}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]$ and $f \in \left[X_{f}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]^{*}$, where
$$\left[X_{f}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]^{*}$$
is the dual space of $\left[X_{f}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]$.
Take $x = (x_{mn}) \in \left[X_{f}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]$. Then,
$$|y_{mn}| \leq \|f\||d(x_{mn}, 0) < \infty \ \forall m, n$$
(3.3)

Thus, (y_{mn}) is a p - metric of double analytic sequence and hence an p - metric of double analytic sequence. In other words, $y \in \left[\Lambda_{f}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]$.

Therefore $\left[X_f^2, \left\|\left(d(u_2), d(u_3), \dots, d(u_p)\right)\right\|_p\right]^* = \left[\Lambda_f^2, \left\|\left(d(u_2), d(u_3), \dots, d(u_p)\right)\right\|_p\right]$. This completes the proof.

3.5. Proposition. $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} x_{mn} a_{mn}$ converges for all

$$x = \{x_{mn}\} \in \left[X_{f}^{2}, \left\| \left(d(u_{2}), d(u_{3}), \dots, d(u_{p}) \right) \right\|_{p} \right] \Leftrightarrow \{a_{mn}\} \in \left[X_{g}^{2}, \left\| \left(d(u_{2}), d(u_{3}), \dots, d(u_{p}) \right) \right\|_{p} \right]$$

Proof: $|x_{mn}a_{mn}| \le f_{mn}(|x_{mn}|) + g_{mn}(a_{mn})$

 $\Leftrightarrow \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |x_{mn}a_{mn}| \le \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f_{mn}(|x_{mn}|) + \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} g_{mn}(|a_{mn}|).$

Since $a = \{a_{mn}\} \in \left[X_g^2, \left\| \left(d(u_2), d(u_3), \dots, d(u_p) \right) \right\|_p \right]$ we have

3.6. Theorem.

(i) If the sequence (f_{mn}) satisfies uniform Δ_2 – condition, then

$$\left[X_{f}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]^{\alpha} = \left[X_{g}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]$$

(ii) If the sequence (g_{mn}) satisfies uniform Δ_2 – condition, then

$$\left[X_{f}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]^{\alpha} = \left[X_{g}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]$$

Proof: Let the sequence (f_{mn}) satisfies uniform Δ_2 – condition, we get

$$\left[X_{g}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right] = \left[X_{f}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]^{\alpha}$$
(3.4)

To prove the inclusion

let

$$\begin{split} & \left[X_{f}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]^{\alpha} \subset \left[X_{g}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right], \\ & a \in \left[X_{f}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]^{\alpha}. \end{split}$$

Then for all $\{x_{mn}\}$ with $(x_{mn}) \in \left[X_f^2, \left\| \left(d(u_2), d(u_3), \dots, d(u_p) \right) \right\|_p \right]$ we have

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |x_{mn}a_{mn}| < \infty$$
(3.5)

Since the sequence (f_{mn}) satisfies uniform Δ_2 – condition, then

$$(y_{mn}) \in \left[X_{f}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right], \text{ we get } \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left|\frac{y_{mn}a_{mn}}{(m+n)!}\right| < \infty. \text{ by } (3.5). \text{ Thus } (a_{mn}) \in \left[X_{f}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right] = \left[X_{g}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]$$

and hence

$$(a_{mn}) \in \left[X_{g}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]. \text{ This gives that} \\ \left[X_{f}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]^{\alpha} \subset \left[X_{g}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]$$
(3.6)

we are granted with (3.4) and (3.6)

$$\left[X_{f}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]^{\alpha} = \left[X_{g}^{2}, \left\|\left(d(u_{2}), d(u_{3}), \dots, d(u_{p})\right)\right\|_{p}\right]$$

(ii) Similarly ,one can prove that

$$\left[X_g^2, \left\| \left(d(u_2), d(u_3), \dots, d(u_p) \right) \right\|_p \right]^{\propto} \subset \left[X_f^2, \left\| \left(d(u_2), d(u_3), \dots, d(u_p) \right) \right\|_p$$

If the sequence (g_{mn}) satisfies uniform Δ_2 – condition.

3.7 Proposition. Let $\left[X_f^2, \left\| (d(u_2), d(u_3), \dots, d(u_p)) \right\|_p \right]$ be an p – metric linear space and $0 \neq x \in X_f^2$. Then the following statements are equivalent:

(i) x is p – orthogonal to y

(ii) There exist
$$d(u_2), d(u_3), ..., d(u_p) \in X_f^2$$
 and $F \in (X_f^2)_B^*$ such that $d(F, 0) = 1$,
 $F \left[X_f^2(x), \left\| \left(d(u_2), d(u_3), ..., d(u_p) \right) \right\|_p \right] = F \left[X_f^2(y), \left\| \left(d(u_2), d(u_3), ..., d(u_p) \right) \right\|_p \right] = 0$

and

$$B = \left\{ d(u_2), d(u_3), \dots, d(u_p) \right\}$$

3.8.Corollary. Let $\left[X_f^2(x), \left\|\left(d(u_2), d(u_3), \dots, d(u_p)\right)\right\|_p\right]$ be an p - metric linear space, f a non empty subspace of $X_f^2, 0 \neq x \in X_f^2$ and $g_0 \in f$. Then the following statements are equivalent:

(i)
$$g_0 \in P_f^P(x)$$

(ii) There exist $d(u_2), d(u_3), \dots, d(u_p) \in X_f^2$ and $F \in (X_f^2)_B^*$ such that d(F, 0) = 1,

$$F\left[X_{f}^{2}-g_{0},\left(d(u_{2}),d(u_{3}),\ldots,d(u_{p})\right)_{p}\right]=\left\|X_{f}^{2}-g_{0},\left(d(u_{2}),d(u_{3}),\ldots,d(u_{p})\right)\right\|_{p}$$

and

$$F\left[g, \left(d(u_2), d(u_3), \dots, d(u_p)\right)\right] = 0, \forall f \in f \text{ and } B = \{d(u_2), d(u_3), \dots, d(u_p)\}$$

3.9.Lemma. We define the following function

$$\begin{bmatrix} X_{f}^{2}(x), \left\| \left(d(u_{2}), d(u_{3}), \dots, d(u_{p}) \right) \right\|_{p}^{Y} \end{bmatrix} \quad \text{on} \quad Y \times Y \times \dots \times Y(p - factors) \quad \text{by} \quad \left\| \left((m+n)! \, |x_{mn}| \right)_{1}^{1/m+n}, \left((m+n)! \, |x_{mn}| \right)_{1}^{1/m+n} \right\|_{p}$$

are linearly dependent, and

$$\begin{split} \left\| \left((m+n)! \, |x_{mn}| \right)_{1}^{1/m+n}, \left((m+n)! \, |x_{mn}| \right)_{2}^{1/m+n}, \dots \left((m+n)! \, |x_{mn}| \right)_{p}^{\frac{1}{m}+n}, \right\|_{p} &= \inf \left\{ m, n \ge 1, u_{2} \dots u_{p} \in X_{f}^{2} f \left(\left\| \left((m+n)! \, |x_{mn}| \right)_{1}^{\frac{1}{m}+n}, \left(d(u_{2}), d(u_{3}), \dots, d(u_{p}) \right) \right\|_{p} \right) < 1 \right\} \\ &\text{if } \left((m+n)! \, |x_{mn}| \right)_{1}^{1/m+n}, \left((m+n)! \, |x_{mn}| \right)_{2}^{1/m+n}, \dots \left((m+n)! \, |x_{mn}| \right)_{p}^{\frac{1}{m}+n} \text{ are linearly independent.} \end{split}$$

3.10.Example. Consider the space X^2 of real sequences with only finite number of non-zero terms. Let us define : $||x_1, x_2, ..., x_p||_p = 0$, if $x_1, x_2, ..., x_p$ are are linearly dependent,

$$= \lim_{m,n\to\infty} \left(\left((m+n)! |x_{mn}| \right)_1^{\frac{1}{m}+n}, \left((m+n)! |x_{mn}| \right)_2^{\frac{1}{m}+n}, \dots \left((m+n)! |x_{mn}| \right)_p^{\frac{1}{m}+n} \right),$$

if $x_1, x_2, ..., x_p$ are are linearly independent. Then $\left\|X_f^2(x), (d(u_2), d(u_3), ..., d(u_p))\right\|_p$ is an -p metric on x^2 consisting of real sequences.

Acknowledgement: I wish to thank the referee's for their several remarks and valuable suggestions that improved the presentation of the paper.

References

- [1]. B.Altay and F.Başar, Some new spaces of double sequences, J.Math. Anal. Appl., 309(1), (2005), 70-90.
- [2]. F.Başar and Y.Sever, The space L_p of double sequences ,Math. J. Okayama Univ, 51, (2009), 149157.
- [3]. M.Basarir and O.Solancan, On some double sequence spaces, J.Indian Acad. Math., 21(2) (1999), 193-200.
- [4]. T.J.I' A.Bromwich, An introduction to the theory of infinite series Macmillan and Co.Ltd., New York,(1965).
- [5]. J.Cannor, On strong matrix summability with respect to amodul us and statistical convergence, Canad. Math. Bull., 32(2), (1989),194-198
- [6]. A.Gökhan and R.Çolak, The double sequence spaces $c_2^P(p)$ and $c_2^{PB}(p)$, Appl. Math.Comput., 157(2),(2004),491-501.
- [7]. A.Gökhan and R.Çolak, Double sequence spaces l_2^{∞} , ibid., 160(1),(2005),147-153.
- [8]. G.H.Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19(1917), 8695.
- [9]. H.J.Hamilton, Transformations of multiple sequences, DukeMath.J.,2,(1936),29-60.
- [10]. -----, A Generalization of multiple sequences transformation, DukeMath.J.,4,(1938),343358.
- [11]. -----, Preservation of partial Limits in Multiple sequence transformations, DukeMath.J., 4,(1939),293-297
- [12]. P.K.Kamthan and M.Gupta, Sequence spaces and series, Lecture notes, Pure and Applied Mathematics, 65 Marcel Dekker, Inc., NewYork, 1981.
- [13]. J.Lindenstrauss and L.Tzafriri, On Orlicz sequence spaces, Israel J.Math., 10(1971), 379-390.
- [14]. M.Mursaleen and O.H.H.Edely, Statistical convergence of double sequences, J.Math.Anal. Appl., 288(1), (2003), 223-231.
- [15]. I.J.Maddox, Sequence spaces defined by amodulus, Math.Proc.Cambridge Philos.Soc,100(1) (1986),161-166.
- [16]. F.Moricz, Extentions of the spaces c and c_0 from single to double sequences, Acta.Math. Hung., 57(1-2), (1991), 129-136.
- [17]. F.Moricz and B.E.Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math.Proc.Camb.Phil.Soc.,104,(1988),283-294.
- [18]. A.Pringsheim, Zurtheorie derzweifach unendlichen zahlenfolgen ,Math.Ann.,53,(1900),289321.
- [19]. N.Subramanian and U.K.Misra, The semi normed space defined by a double gai sequence of modulus function, FasciculiMath.,46,(2010).
- [20]. B.C. Tripathy, On statistically convergent double sequences, TamkangJ.Math., 34(3), (2003), 231-237.
- [21]. A.Turkmenoglu, Matrix transformation between some classes of double sequences, J.Inst. Math.Comp.Sci.Math.Ser., 12(1), (1999), 23-31.
- [22]. A.Wilansky, Summability through Functiona lAnalysis, North-Holland Mathematical Studies, North-Holland Publishing, Amsterdam, Vol. 85(1984).
- [23]. M.Zeltser, Investigation of Double Sequence Spaces by Softand Hard Analitical Methods, Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ.ofTartu, Faculty of Mathematics and Computer Science, Tartu, 2001