
NTMSCI 3, No. 3, 192-204 (2015) 192

New Trends in Mathematical Sciences
http://www.ntmsci.com

An efficient algorithm for solving nonlinear system of
differential equations and applications

Yalcin Ozturk1 and Mustafa Gulsu2

1Ula Ali Kocman Vocational Scholl, Mugla Sitki Kocman University, Mugla, Turkey
2Department of Mathematics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey

Received: 20 February 2015, Revised: 23 March 2015, Accepted: 5 May 2015
Published online: 25 September 2015

Abstract: In this article, we apply Chebyshev collocation method to obtain the numerical solutions of nonlinear systems of differential
equations. This method transforms the nonlinear systems of differential equation to nonlinear systems of algebraic equations. The
convergence of the numerical method are given and their applicability is illustrated with some examples.
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1 Introduction

One of the fundamental classes of system equations is nonlinear differential equation systems (NDES). Such equations

arise in many areas of natural science and play an important role in the modeling of real-life phenomena in other fields of

science. Some of the most popular modelling are prey-predator model [1-6], epidemic model [7-10], kinetic model

[11-12], ozone decomposition model [13-14], modelling of mosquito dispersal [15], modelling a thermal explosion [16],

dynamical models of happiness [17]. Therefore, NDESs have recieved much attention in last years. Some of NDESs

cannot be solved by known classical methods. Hence, it is desirable to present numerical methods to solve these

equations numerically.

The last years, it was found that the spectral methods are a valid method to obtain approximations for some type

equations such as differential equations,

Fredholm-Volterra integro differential equations(see [18-28]). In this paper, we present a method to approximate a

nonlinear differential equations systems on interval by using shifted Chebyshev polynomials. Consider the following

NDES
m

∑
j=0

Pi j(x,y j,y
(1)
j , ...,y(ki)

j ) = fi(x) x ∈ [−1,1] (1)

for i = 1,2, ...,m and x ∈ [a,b], we consider the supplementary conditions

m

∑
j=1

n

∑
k=1

(A jkiy
(ki−1)(x1)+B jkiy

(k j−1)(x2)) = λi, i = 1,2, ...,m (2)
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where fi(x) is analytic functions. The motivation of this paper is to illustrate the merits of the method in solving some

systems of nonlinear ordinary differential equations. The collocation method is useful for obtaining exact and

approximate solutions of linear differential equations. The availability of computer symbolic packages such as Maple

give a mathematical tool to perform some complicated manipulations and to carry out some modifications on a method

for a specific problem easily. In the present paper, we apply the collocation method for solving problem (1) and (2). Our

method consists of reducing the solutions of Eq. (1) to a set of nonlinear algebraic equations by expanding as the

truncated first kind shifted Chebyshev polynomials with unknown coefficients. The properties of the shifted Chebyshev

polynomials are then utilized to evaluate the unknown coefficients. Note that we have computed the numerical results by

Maple programming. The rest of the paper is as follows. First, in Section 2 we review some of the main properties of the

shifted Chebyshev polynomials. In Section 3, we illustrate how the collocation method may be used to replace Eq.(1) by

systems of nonlinear algebraic equations. In Section 4, we report our numerical results and demonstrate the efficiency

and accuracy of the proposed numerical scheme by considering some numerical examples.

2 The Shifted Chebyshev polynomial properties

The shifted Chebshev polynomials which can be obtained with the aid of the following recurrence formula [29-30]:

T ∗
L,r+1(x) = 2(

2x
L
)T ∗

L,r(x)−T ∗
L,r−1(x),r = 1,2, ...

where T ∗
L,0 = 1, T ∗

L,1 =
2x
L −1. The analytic form of the shifted Chebyshev polynomials T ∗

L,r(x) of degree r is given by

T ∗
L,r(x) = r

r

∑
p=0

(−1)r−p (r+ p−1)!22p

(r− p)!(2p)!
xp (3)

where T ∗
L,r(0) = (−1)r, T ∗

L,r(L) = 1. The orthogonality condition is

∫ L

0
T ∗

L, j(x)T
∗

L,i(x)wL(x)dx = hkδ ji

where wL(x) = (Lx−x2)−1/2 and hi = biπ/2, b0 = 2, bi = 1, i ≥ 1. By Eq.(4), we have the k− th derivatives of T ∗
L,r(x)

(T ∗
L,r(x))

(k) = T ∗,k
L,r (x) = r

r

∑
p=m

(−1)r−p p(p−1)...(p− k+1)
(r+ p−1)!22p

(r− p)!(2p)!
xp−k (4)

3 Solution method

In order to solving Eq.(1) by using collocation method, first all, we approximate y j(x) as

y j
N(x) =

N

∑
r=0

a j
rT ∗

r (x) (5)
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where a j
r , r = 0,1,2, ...,N are unknown shifted Chebyshev coefficients and N is chosen any positive integer. From (1) and

(5), we have
m

∑
j=1

Pi j

(
x,

N

∑
r=0

a j
rT ∗

r (x),
N

∑
r=1

a j
rT ∗,1

r (x), ...,
N

∑
r=ki

a j
rT ∗,ki

r (x)
)
= fi(x) (6)

Now, we collocate Eq.(6) at (N −m+1) points xp, p = 0,1,2, ...,N −m as:

m

∑
j=1

Pi j

(
xp,

N

∑
r=0

a j
rT ∗

r (xp),
N

∑
r=1

a j
rT ∗,1

r (xp), ...,
N

∑
r=ki

a j
rT ∗,ki

r (xp)
)
= fi(xp) (7)

Also, by substituting Eq.(5) in the conditions Eq.(2), we obtain k equations as follows:

m

∑
j=1

n

∑
k=1

(
A jki

N

∑
r=ki−1

a j
rT ∗,ki−1

r (x1)+B jki

N

∑
r=ki−1

a j
rT ∗,ki−1

r (x2)
)

(8)

Eq.(7) and Eq.(8) give a (m× (N +1))-times non-linear algebraic equations. Solving this nonlinear algebraic system by

aid of Maple 15, we obtain the unknown shifted Chebshev coefficients a j
r , r = 0,1,2, ...,N Therefore, Using (5), obtain

the approximate solutions for various N.

3.1 Error analysis

In this section, we present convergence analysis of the mention method. We assume that y(x) is a sufficiently smooth

function on [0,1] and IN(x) is the interpolating polynomial to y(x) at xi where xi, i = 0,1,2, ...,N are the Cbeyshev-Gauss

grid points, then we have

y(x)− IN(x) =
y(N+1)(ξ )
(N +1)!

N

∏
i=0

(x− xi),ξ ∈ [0,1]

Therefore, we have [29,32]

|y(x)− IN(x)| ≤
1

22N+1 ||y
(N+1)(x)||∞ (9)

Theorem 1. Suppose that the known functions in Eq.(1) are real (N +1)-times conti. differential functions on the [0,1]

and

yN(x) =
N

∑
r=0

arT ∗
r (x)

are the shifted Chebyshev polynomials expansion of the exact solution. Let

yN(x) =
N

∑
r=0

arT ∗
r (x)

be the approximate solution obtained by proposed method, then there exist real number α such that

||y(x)− yN(x)|| ≤ α
1

22N+1 ||y
(N+1)(x)||∞ +

√
3π
8
||A−A||

where

A =
[

a0 a1 ... aN

]
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and

A =
[

a0 a1 ... aN

]
.

Proof. Let yN(x) is real valued polynomials of degree≤ N and yN(x) is the best approximation of y(x). We can write

||y(x)− yN(x)||2 ≤ ||y(x)− yN(x)||2 + ||yN(x)− yN(x)||2

Using (9), we obtain

||y(x)− yN(x)||2 =
(∫ 1

0
|y(x)− yN(x)|2dx

)1/2
≤
(∫ 1

0

1
22N+1(N +1)!

||y(N+1)(x)||dx
)1/2

=
√

L
1

22N+1(N +1)!
||y(N+1)(x)||∞

and we have

||y(x)− yN(x)||2 =
(∫ 1

0

[ N

∑
r=0

(ar −ar)T ∗
r (x)

]2
dx
)1/2

≤
(∫ 1

0

[ N

∑
r=0

(ar −ar)
2
][ N

∑
r=0

|T ∗
r (x)|2

]
dx
)1/2

=
[ N

∑
r=0

(ar −ar)
2
]1/2( N

∑
r=0

∫ 1

0
|T ∗

r (x)|2dx
)1/2

=

√
3π
8
||A−A||2.

Moreover, we can check the accuracy of the method. Since the truncated Chebyshev series (3) is an approximate solutions

of Eq.(1), when the function yN
j (t), j = 1, ...,m and its first derivatives are substituted in Eq.(1) the resulting equation must

be satisfied approximately[32]; that is, for ti ∈ [0,1], i = 0,1,2, , ...

∣∣∣ m

∑
j=1

Pi j(xi,y
j
N ,(y

j
N)

′, ...,(y j
N)

ki)− fi(xi)
∣∣∣∼= 0, i = 1,2, ...,m. (10)

On the other hand, the error can be estimated by the function [32]

EN
j (x) =

m

∑
j=1

Pi j(x,y
j
N ,(y

j
N)

′, ...,(y j
N)

ki)− fi(x), i = 1,2, ...,m. (11)

4 Numerical results

In this section, we give some the numerical examples. The absolute errors in Tables are the values of N j
e = |y j(x)−yN

j (x)|,
those at selected points. In Tables max|y j(x)− yN

j (x)| is maximum absolute errors. Moreover, we compare the absolute

errors and L2-norm is defined by

EL
N =

(∫ 1

0
(y(x)− yN(x))2dx

)1/2

where y(x) and yN(x) denote the exact solution and the approximate solution obtained by the present method, respectively.
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Example 1. Consider the nonlinear system of second-order boundary value problems:

y
′′
1(x)+ xy

′
1(x)+ cos(πx)y

′
2(x) = f1(x)

y
′′
2(x)+ xy

′
1(x)+ xy2

1(x) = f2(x)

y1(0) = y1(1) = 0, y2(0) = y2(1) = 0

where

f1(x) = sin(x)+(x2 − x+2)cos(x)+(1−2x)cos(πx)

f2(x) =−2+ xsin(x)+ x(x−1)2sin2(x)+(x2 − x)cos(x).

The exact solutions are y1(x) = x− x2 and y2(x) = (x−1)sin(x). From numerical algorithm, we have, for N = 6

6

∑
r=2

a1
r T ∗,2

r (xq)+ xq

6

∑
r=1

a1
r T ∗,1

r (xq)+ cos(πxq)
6

∑
r=1

a2
r T ∗,1

r (xq) = f1(xq) (12)

6

∑
r=2

a2
r T ∗,2

r (xq)+ xq

6

∑
r=1

a1
r T ∗,1

r (xq)+ xq

( 6

∑
r=0

a1
r T ∗

r (xq)
)2

= f2(xq) (13)

with q = 0,1,2,3,4, where xq are roots of the shifted Chebyshev polynomials T ∗
5 and conditions

y6
1(0) = a1

0 −a1
1 +a1

2 −a1
3 +a1

4 −a1
5 +a1

6 = 0 (14)

y6
1(1) = a1

0 +a1
1 +a1

2 +a1
3 +a1

4 +a1
5 +a1

6 = 0 (15)

y6
2(0) = a2

0 −a2
1 +a2

2 −a2
3 +a2

4 −a2
5 +a2

6 = 0 (16)

y6
2(1) = a2

0 +a2
1 +a2

2 +a2
3 +a2

4 +a2
5 +a2

6 = 0 (17)

Thus, we obtain 14 nonlinear algebraic equations with the 14 unknown by Eqs.(9)-(13). Now solving equations, we have

unknown coefficients whose are substituting into Eq.(5), we get the approximate solution for N = 6

y1
6(x) = x− x2 (18)

y2
6(x) =−0.998619x+ x2 +0.166038x3 −0.166375x4 −0.008922x5 +0.007313x6 (19)

Results for Example 1 is reported in Table 1. Table 1 are compared with the results obtained by the Variational iteration

method (VIM) and present method between exact solution y2(x) and computational solution y2
N(x) for N = 6,8. The

behavior of the absolute errors obtained by present method are shown in Fig.1. In Fig.2, we plotted error estimation

functions for N = 8.
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Table 1. Numerical results of Example 1.

Present Method

x Exact Solution N = 6 Ne = 6 N = 8 Ne = 8 VIM Error of VIM

0.1 -0.089850 -0.089712 0.138E-3 -0.089841 0.441E-5 -0.27844 0.0003

0.2 -0.158935 -0.158659 0.275E-3 -0.158927 0.846E-5 -0.47274 0.025

0.3 -0.206864 -0.206451 0.412E-3 -0.206853 0.110E-4 -0.57415 0.0078

0.4 -0.233651 -0.233105 0.545E-3 -0.233642 0.830E-5 -0.58722 0.0166

0.5 -0.239712 -0.239047 0.665E-3 -0.239720 0.813E-5 -0.52768 0.0277

0.6 -0.225856 -0.225099 0.757E-3 -0.225907 0.509E-4 -0.41910 0.0387

0.7 -0.193265 -0.192474 0.791E-3 -0.193394 0.129E-3 -0.28860 0.0459

0.8 -0.143471 -0.142748 0.488E-3 -0.143697 0.226E-3 -0.16242 0.0449

0.9 -0.078332 -0.077844 0.488E-3 -0.078591 0.258E-3 -0.06184 0.0309

1.0 0.000000 -0.57E-10 0.57E-10 0.58E-11 0.58E-11 0.0 0.0

Fig. 1: Comparison of absolute errors. Fig. 2: Error function for N = 8.

Example 2. Consider the nonlinear system of first-order boundary value problems:

y
′
1(x)− y

′
2(x)+ y1(x)y2(x) = f1(x)

y
′
2(x)+ y

′
1(x)− y1(x)y2(x) = f2(x)

y1(0) = y2(0) = 0

where

f1(x) = e−x(1− x)+ ex(x+1)− x2

f2(x) = e−x(x−1)+ ex(x+1)+ x2

and exact solutions of this problem y1(x) = xex and y2(x) = xe−x. We compare our computational solutions obtained by

present method with the exact solutions in Tables 2 and 3 for y1
N(x) and y2

N(x) respectively. It can be seen from the Tables

and Figures that, our approximate solutions are in very good agreement with the exact solutions. Moreover, the results

of the corresponding absolute errors are presented in the same tables, using only the five, seven and nine order terms of

the approximate solutions. We find that the absolute errors are very small, which reveals that the speed of convergence of

present method is very fast, and the overall errors can be made very small by computing more terms in approximations.
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Table 2. Numerical results of Example 2.

Present Method

x Exact Solution N = 5 Ne = 5 N = 7 Ne = 7 Ne = 9 Ne = 9

0.1 0.110517 0.110514 0.230E-5 0.110517 0.224E-8 0.110517 0.477E1-2

0.2 0.244280 0.244278 0.205E-5 0.244280 0.493E-8 0.244280 0.311E-12

0.3 0.404957 0.404960 0.275E-5 0.404957 0.287E-9 0.404957 0.464E-11

0.4 0.596729 0.596734 0.413E-5 0.596729 0.785E-8 0.596729 0.623E-11

0.5 0.824360 0.824358 0.173E-5 0.824360 0.155E-8 0.824360 0.133E-11

0.6 1.093271 1.093262 0.887E-5 1.093271 0.126E-7 1.093271 0.962E-11

0.7 1.409626 1.409621 0.547E-5 1.409626 0.417E-8 1.409626 0.116E-10

0.8 1.780432 1.780444 0.114E-4 1.780432 0.169E-7 1.780432 0.546E-11

0.9 2.213642 2.213651 0.907E-5 2.213642 0.327E-7 2.213642 0.145E-12

1.0 2.718281 2.718160 0.121E-3 2.718281 0.233E-6 2.718281 0.251E-9

Table 3. Numerical results of Example 2.

Present Method

x Exact Solution N = 5 Ne = 5 N = 7 Ne = 7 Ne = 9 Ne = 9

0.1 0.090483 0.090484 0.101E-5 0.090483 0.134E-8 0.090483 0.187E-12

0.2 0.163746 0.163747 0.905E-6 0.163746 0.161E-8 0.163746 0.128E-12

0.3 0.222245 0.222244 0.110E-5 0.222245 0.239E-9 0.222245 0.182E-11

0.4 0.268128 0.268126 0.165E-5 0.268128 0.340E-8 0.268128 0.240E-11

0.5 0.303265 0.303265 0.653E-6 0.303265 0.210E-8 0.303265 0.482E-11

0.6 0.329286 0.329290 0.340E-5 0.329286 0.435E-8 0.329286 0.364E-11

0.7 0.347609 0.347612 0.231E-5 0.347609 0.179E-8 0.347609 0.415E-10

0.8 0.359463 0.359459 0.350E-4 0.359463 0.677E-8 0.359463 0.168E-11

0.9 0.365912 0.365909 0.329E-5 0.365912 0.989E-8 0.365912 0.469E-12

1.0 0.367879 0.367915 0.362E-4 0.367879 0.739E-7 0.367879 0.810E-10

Fig. 3: Comparison of absolute errors. Fig. 4: Comparison of absolute errors.

Example 3. Let us consider the nonlinear stiff problem [33-34]

y
′
1(x) =−1002y1(x)

y
′
2(x) = y1(x)− y2(x)− (y2(x))2

y1(0) = y2(0) = 1

The exact solution of Example 3 is

y1(x) = e−2x, y2(x) = e−x
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The obtained results are summarized in Tables 4 and 5. The Variational iteration method (VIM) is better than Adomian

decomposition method (ADM). The our approximate solutions and VIM are in very good agreement.
Table 4. Numerical comparison of Example 5.3 for y1(x).

x VIM errors [33] ADM errors [34] PM errors

1.0 0.1785E-16 0.2556E-4 0.0975E-16

1.5 0.1972E-16 0.3487E-5 0.1045E-16

2.0 0.2003E-16 0.1638E-3 0.1256E-16

2.5 0.2416E-16 0.2417E-3 0.1689E-16

3.0 0.2942E-16 0.3764E-2 0.2563E-16

Table 5. Numerical comparison of Example 3 for y2(x).

x VIM errors [33] ADM errors [34] PM errors

1.0 0.1785E-15 0.2895E-4 0.1001E-16

1.5 0.1942E-15 0.4135E-4 0.1112E-16

2.0 0.2105E-15 0.1638E-3 0.1561E-16

2.5 0.2743E-15 0.2417E-3 0.1674E-16

3.0 0.3013E-15 0.1735E-2 0.2256E-16

Example 4. Let us consider the following nonlinear system of Lane-Emden equation:

y
′′
1(x)+

2
x

y
′
1(x)− y2(x)+ ey2(x) = f1(x)

y
′′
2(x)+

2
x

y
′
2(x)+ y1(x)+ ey1(x) = f2(x)

y1(0) = y2(0) = 1

where

f1(x) = 1+ x2 +(4x2 −6)e−x2 − ln(1+ x2)

f2(x) = ln(1+ x2)+ exp(e−x2
)+

6
1+ x2 − 4x2

(1+ x2)2

subject to initial conditions

y1(0) = 1, y
′
1(0) = y2(0) = y

′
2(0) = 0

which has the following analytic solution:

y1(x) = e−x2
, y2(x) = ln(1+ x2)

Numerical results are given in Tables 6 and 7.
Table 6. Numerical results of Example 4.

Present Method

x Exact Solution N = 5 Ne = 5 N = 8 Ne = 8 Ne = 9 Ne = 9

0.2 0.960789 0.960780 0.928E-5 0.960789 0.389E-7 0.960789 0.389E-9

0.4 0.852143 0.852179 0.352E-4 0.852143 0.535E-7 0.852143 0.535E-9

0.6 0.697676 0.697651 0.249E-4 0.697674 0.143E-5 0.697674 0.143E-7

0.8 0.527292 0.527317 0.252E-4 0.527287 0.501E-5 0.527287 0.501E-7

1.0 0.367879 0.369850 0.197E-2 0.367912 0.332E-4 0.367912 0.332E-6
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Table 7. Numerical results of Example 4.

Present Method

x Exact Solution N = 5 Ne = 5 N = 8 Ne = 8 Ne = 9 Ne = 9

0.2 0.039280 0.039280 0.683E-4 0.039220 0.623E-5 0.039220 0.623E-6

0.4 0.148420 0.148628 0.208E-4 0.148420 0.408E-5 0.148420 0.408E-6

0.6 0.307484 0.307790 0.305E-4 0.307484 0.362E-5 0.307484 0.362E-6

0.8 0.494696 0.495315 0.619E-3 0.494696 0.475E-4 0.494696 0.475E-5

1.0 0.693147 0.699363 0.621E-2 0.693147 0.982E-3 0.693147 0.982E-5

5 Application of method

Modelling of ecological systems has received a great deal of attention from theoretical ecologists in the last few decades.

Much focus has been on mathematical models of these systems, since they have substantially contributed to the

understanding of the dynamics of systems by forging strong links between models and available data. We first consider

the logistic growth in a population as a single species model to be governed by [35-39]

dy
dx

= ry(1− y/k), y(0) = α , r > 0, k > 0 (20)

where y = y(x) represents the population of the species at time x, ry(1− y/k) is the per capita growth rate and k is the

carrying capacity of the environment. For numerical purpose we take r = k = 1 and α = 2 in [36−37],then exact solution

is

y(x) =
2

2− e−x .

Comparison of various numerical methods are given in Table 8. For various, absolute errors of approximate solutions are

plotted in Fig..
Table 8. Comparison of numerical methods.

x Present method Homotopy per. method[39] Adomian decomp. method[37] Bessel col. method[36]

0.0 2.0000000000 2.0000000000 2.0000000000 2.0000000000

0.2 1.6930940588 1.6932805333 1.6924480000 1.6929496880

0.4 1.5041219473 1.5236181333 1.4703360000 1.5040518406

0.6 1.3781801288 1.6597808000 1.0528640000 1.3781410954

0.8 1.2897638171 3.1168085333 -0.293248000 1.2896532734

1.0 1.2253849971 8.9083333333 -4.100000000 1.2276056502

Fig. 5: Comparison of absolute errors for the logistic model.
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Secondly, we consider the modelling of spreading of a non-fatal disease in a population which is assumed to have constant

size over the period of the epidemic is considered in [40-41]. It was created a model in which they considered a fixed

population with only three compartments: susceptible y1(x), infected y2(x) and recovered y3(x). The compartments used

for this model consist of three classes:

1. y1(x): susceptible population, those so far uninfected and therefore liable to infection;

2. y2(x): infective population, those who have the disease and are still at large;

3. y3(x): isolated population, or who have recovered and are therefore immune.

Assume that there is a steady constant rate between susceptible population and infective population and that a constant

proportion of these constant results in transmission. Following system determines the progress of the disease

dy1

dx
=−βy1(x)y2(x)

dy2

dx
= βy1(x)y2(x)− γy2(x)

dy2

dx
= γy2(x)

with initial conditions

y1(0) = α1, y2(0) = α2, y3(0) = α3.

where population is a fixed that is R = y1(x)+y2(x)+y3(x). For more details and numerical treatments can see in Ref.[40-

46]. For numerical results the following values, for parameters are considered[42]: α1 = 20 Initial population of y1(x),

who are susceptible. α2 = 15 Initial population of y1(x), who are infective. α3 = 10 Initial population of y1(x), who are

immune. β = 0.01 Rate of change of susceptible to infective population. γ = 0.02 Rate of change of infective to immune

population.

Fig. 6: Plot of susceptible, infective and recovered population with seven terms.
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Fig. 7: Plot of susceptible, infective and recoveredpopulation with nine terms.

The given Figs. 6 and 7 show the relations between the population number of susceptible, infective and recovered versus

time. Numerical results are the same line in Ref.[7].As the plots show while the number of susceptibles increases the

population of who are infective decreases in the period of the epidemic, meanwhile the number of immune population

increases [7].

6 Conclusion

In this paper, we have proposed a collocation method based on the shifted Chebyshev polynomials to numerically solve

nonlinear differential equations. This method uses the shifted Chebyshev-Gauss nodes to reduce the considered nonlinear

differential equations to the solution of a nonlinear algebraic equation with unknown the shifted Chebyshev polynomials.

It is seen from the numerical experiments that the convergence rate of the numerical solutions are increas, when terms of

polynomial increases. Moreover, we give two numerical application of proposed method as consider the logistic growth

in a population as a single species and spreading of a non-fatal disease in a population.
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