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Abstract: In this paper, we investigate the first integral method for solving the K (m,n) equation with generalized evolution.

(un)t +a(um)ux
+b(un)xxx = 0

A class of traveling wave solutions for the considered equations are obtained where 4n = 3(m + 1). This idea can obtain some exact
solutions of this equations based on the theory of Commutative algebra.
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1. Introduction
In 1993, Rosenau and Hyman [1] introduced and studied a genuinely nonlinear dispersive equation, a special type of KdV
equation, of the form

ut +a(un)x +(un)xxx = 0, n > 1, (1)

where a is a constant and both the convection term (un)x and the dispersion effect term (un)xxx are nonlinear. These
equations arise in the process of understanding the role of nonlinear dispersion in the formation of structures like liquid
drops. Many powerful methods were applied to construct the exact solutions for Eq.(1), such as Adomain method [1],
homotopy perturbation method [2], Exp-function method [3], variational iteration method [4], variational method [5, 6].
In [7], Wazwaz studied a generalized forms of the Eq.(1), that is mK (n,n)equations and defined by

un−1ut +a(un)x +b(un)xxx = 0, n > 1, (2)

where a, b are constants. He showed how to construct compact and non-compact solutions for Eq.(2) and discussed it in
higher dimensional spaces in [8]. Chen et al. [9] showed how to construct the general solutions and some special exact
solutions for Eq.(2) in higher dimensional spatial domains. He et al. [10] considered the bifurcation behavior of travelling
wave solutions for Eq.(2). Under different parametric conditions, smooth and non-smooth periodic wave solutions, solitary
wave solutions and kink and anti-kink wave solutions were obtained. Yan [11] further extended Eq.(2) to be a more general
form,

um−1ut +a(un)x +bkxxx = 0, nk ̸= 0, (3)

and using some direct ansatz, some abundant new compacton solutions, solitary wave solutions and periodic wave
solutions of Eq.(3) were obtained. By using some transformations, Yan [12] obtained some Jacobi elliptic function

c⃝ 2014 BISKA Bilisim Technology

∗ Corresponding author e-mail: abekir@ogu.edu.tr; abdelfattahelachab@gmail.com



NTMSCI 2, No. 1, 12-18 (2014) / www.ntmsci.com 13

solutions for Eq.(3) Biswas [13] obtained 1-soliton solution of equation with the generalized evolution term,

ul
t +a(um)ux

+b(un)xxx = 0 (4)

where a, b are constants, while l, m and n are positive integers. Zhu et al. [14] applied the decomposition method and
symbolic computation system to develop some new exact solitary wave solutions for the K(2,2,1) equation,

ut +a
(
u2)

x −b
(
u2)

xxx +uxxxxx = 0, (5)

and the K(3,3,1) equation
ut +

(
u3)

x −
(
u3)

xxx +uxxxxx = 0, (6)

In [15], Xu and Tian introduced the osmosis K (2,2) equation

ut +
(
u2)

x −
(
u2)

xxx = 0, (7)

where the negative coefficient of dispersive term denotes the contracting dispersion. They obtained the peaked solitary
wave solution and the periodic cusp wave solution for Eq.(7).

As is well known that searching for solitary solutions of nonlinear equations in mathematical physics has become more
and more attractive in solitary theory. In order to obtain the exact solutions, a number of methods have been proposed,
such as the Bäcklund transformation method [16, 17, 18], Hirotas direct method [19], tanh-sech method [20, 21],
extended tanh method [22], the exp- function method [23], sine-cosine method [24, 25, 26], Jacobi elliptic function
expansion method [27], F-expansion method [28].

The first integral method was first proposed in [29] in solving Burgers-KdV equation which is based on the ring theory of
commutative algebra. This method was further developed by the same author [30, 31] and some other mathematicians. In
this work, we use the first integral method to find the exact solutions of the K(m,n) equation with generalized evolution
[32, 33],

(un)t +a(um)ux
+b(un)xxx = 0,

where m , n are positive integrs and a, b are free constants.

This paper is organized as follows: Section 2 is a brief introduction to the first integral method. In section 3, we apply the
first integral method to find exact solutions of the K(m,n) equation with generalized evolution.

2. The First Integral Method
Consider a general nonlinear partial differential equation (PDF) in the form,

P(u,ut ,ux,uxx,uxxx,uxt ,) , (8)

where u(x, t)is the solution of nonlinear partial differential equation (8). By means of the transformation,

u(x, t) = u(ξ ) , ξ = (x− ct) , (9)
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noindent where c is arbitrary constant, we reduce eq (14) to an ordinary differential equation (ODE) of the form,

P
(

u,u
′
,u

′′
,u

′′′
,
)
, (10)

where u = u(ξ )and the primes denote ordinary derivatives with respect to ξ . Next, we introduce a new independent
variable,

v(ξ ) = u(ξ ) , w(ξ ) = u
′
(ξ ) (11)

which leads to a system of ODEs of the form,{
v
′
(ξ ) = w(ξ ) ,

w
′
(ξ ) = H (v(ξ ) ,w(ξ )) .

(12)

According to the qualitative theory of differential equations [34], if we can find two first integrals to system (11) under
the same conditions, then analytic solutions to (11) can be solved directly. However, in general, it is difficult to realize
this even for a single first integral, because for a given plane autonomous system, there is no general theory telling us
how it find it’s first integrals in a systematic way. A key idea of our approach here to find first integral is to utilize the
division theorem.

Theorem 1 (Division theorem) Suppose that P(w,z) and Q(w,z) are polynomials in C [w,z] and that P(w,z) is
irreducible C [w,z]. If Q(w,z) vanishes at any zero point of P(w,z), then there exists a polynomial G(w,z)in C [w,z] such
that,

Q(w,z) = P(w,z) .G(w,z) . (13)

The Divisor Theorem follows immediately from the Hilbert-Nullstellensatz Theorem [35].

Theorem 2 (Hilbert-Nullstellensatz Theorem) Let k be a field and L an algebraic closure of k. Then (i) Every ideal γ of
k[X1, ,Xn] not containing 1 admits at least one zero in Ln (ii) Let x = (x1,x2, ,xn) and y = (y1,y2, ,yn) be two elements of
Ln. For the set of polynomials of k[X1, ,Xn] zero at x to be identical with the set of polynomials of k[X1, ,Xn] zero at y, it is
necessary and sufficient that there exists a k-automorphisms s of L such that yi = si f or 1 ≤ i ≤ n. (iii) For an ideal αof
k[X1, ,Xn]to be maximal, it is necessary and sufficient that there exists xin Lsuch that αis the set of polynomials of
k[X1, ,Xn] zero at x. (iv) For a polynomial Q of k[X1, ,Xn] to be zero on the set of zeros in Ln of an ideal of k[X1, ,Xn], it is
necessary and sufficient that there exists an integer m > 0 such that Qm ∈ γ .

3. The K(m,n) Equation with Generalized Evolution
Let us consider the K(m,n) equation with generalized evolution

(un)t +a(um)ux
+b(un)xxx = 0 (14)

where m , n are positive integrs and a, b are free constants.

Assume that equation (14) has the solution of the form:

u(x, t) = u(ξ ) , ξ = (x− ct) (15)

c⃝ 2014 BISKA Bilisim Technology



NTMSCI 2, No. 1, 12-18 (2014) / www.ntmsci.com 15

where cis arbitrary constant. Substituting (15) into (14) we obtain,

−c(un)
′
+a(um)u

′
+b(un)

′′′
= 0, (16)

where prime denotes derivative with respect to ξ . Integrating the equation (16) with respect to ξ and taking the integration
constants to zero yields:

−cun +
a

m+1
(
um+1)+b(un)

′′
= 0, (17)

Making the following transformation:

u = v
1

(m−n+1) , ;m−n+1 ̸= 0 (18)

then (17) becomes

Mvv
′′ − cPv2 +N

(
v
′
)2

+Rv3 = 0, (19)

where
M = bn(m+1)(m−n+1) , bn(m+1)(2n−m−1) ,

P = (m+1)(m−n+1)2, R = a.(m−n+1)2,

and v
′

and v
′′

denote dv
dξ and d2v

dξ 2 respectively. Equation (19) is a nonlinear ODE, and we can rewrite it as

v
′′ −dv+ e

(
v
′
)2

v
+ f v2 = 0, (20)

where
d =

c(m−n+1)
bn

, e =− (2n−m−1)
(m−n+1)

, f =
a(m−n+1)

bn(m+1)
. (21)

We introduce new independent variables v = z, dv
dξ = w. Then equation (20) can be rewritten as the two-dimensional

autonomous system {
dz
dξ = w,

dw
dξ = dz− e w2

z − f z2.
(22)

Assume that
dξ
z

= dτ (23)

thus system becomes
dz
dτ = zw,

dw
dτ = dz2 − ew2 − f z3.

(24)

Now, we apply the Division Theorem to seek the first integral to (24). Suppose that z = z(τ) and w = w(τ) are the
nontrivial solutions to (24), and p(w,z) = ∑e

i=0 ai (z)wi, is irreducible polynomial in C [w,z] such that

p(w(τ) ,z(ξ )) =
r

∑
i=0

ai (z(τ))wi (τ) = 0, (25)

where ai(z) (i = 0,1, , r) are polynomials in z and all relatively prime in C [w,z], ar(z) ̸= 0. Equation (25) is also called the
first integral to (24). We start our study by assuming r = 1 in (25). Note that d p

dτ is polynomial in z and w and p(w(τ) ,z(τ))
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implies d p
dτ

∣∣∣
(24)

= 0. By the Division Theorem, there exists a polynomial H (z,w) = h(z)+g(z)win C [w,z] such that

d p
dτ

∣∣∣∣
(24)

=

(
d p
dz

dz
dτ

+
d p
dw

dw
dτ

∣∣∣∣
(24)

=
1

∑
i=0

a
′
i (z)wi+1z+

1

∑
i=0

iai (z)wi−1 (dz2 − ew2 − f z3)= (h(z)+g(z)w)

(
1

∑
i=0

ai (z)wi

)
(26)

where prime denotes differentiating with respect to the variable z. On equating the coefficients of wi (i = 0; 1; 2) on
both sides of (26), we have

za
′
1 (z)− ea1 (z) = g(z)a1 (z) , (27)

za
′
0 (z) = g(z)a0 (z)+h(z)a1 (z) , (28)

h(z)a0 (z) = a1 (z)
[
dz2 − f z3] , (29)

since, a1 (z) and g(z) are polynomials, from (27) we conclude that a1 (z) is a constant and g(z) = −e. for simplicity, we
take a1 (z) = 1, and balancing the degrees of a0 (z), and h(z), we conclude that deg h(z) = 1 and dega0 (z) = 2, only. Now
suppose that

h(z) = Az+B,a0 (z) =Cz2 +Dz+E (A ̸= 0,C ̸= 0) , (30)

where A, B and Care all constants to be determined. Using (30) into (28) we obtain

a0 (z) =Cz2 −Az− B
2
,4n = 3(m+1)(A ̸= 0,C ̸= 0) , (31)

substituting a0 (z) , a1 (z) and h(z)in (29) and setting all the coefficients of powers of zto be zero, we obtain a system of
nonlinear algebraic equations, and by solving it, we obtain the following solutions:

A =
√
−d, B = 0, C =

f
d

√
−d, (32)

A =
√
−d, B = 0, C =− f

d

√
−d. (33)

Using the conditions (32) in (25), we obtain

w =− f
d

√
−dz2 +

√
−dz. (34)

Combining this first integral with (25), the second-order differential equation (20) can be reduced to

dv
dξ

=− f
d

√
−dv2 +

√
−dv. (35)

Solving (35) directly and changing to the original variables, we obtain the complex exponential function solution to
equation (14):

u(x, t) =
(

d

f + c1dexp−i
√

dt

) 1
m−n+1

(36)
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where c1 is an arbitrary constant and i2 =−1. Similarly, for the cases of (33), we have anther complex exponential function
solutions:

u(x, t) =
(

d

f + c1dexpi
√

d(x−ct)

) 1
m−n+1

(37)

where c1 is an arbitrary constant and i2 =−1. Consequently, we have following theorem.

Theorem 3 Suppose that 4n = 3(m+1), then Eq. (14) admits exact solutions

u1 (x, t) =
(

d

f + c1dexp−i
√

d(x−ct)

) 1
m−n+1

u2 (x, t) =
(

d

f + c1dexpi
√

d(x−ct)

) 1
m−n+1

where c1 is an arbitrary constant and i2 =−1. In particular, for m = 3 and n = 3, we have the following solutions

u1 (x, t) =

(
c

3b
a

12b + c1
c

12b expi
√ c

3b (x−ct)

)
,

u2 (x, t) =

(
c

3b
a

12b + c1
c

12b exp−i
√ c

3b (x−ct)

)
,

where c1, c, a and b ̸= 0 are constants.

These solutions are all new exact solutions.

Notice that the results in this paper are based on the assumption of r = 1, for the K(m,n)equation with generalized
evolution . For the cases of r ≥ 2for these equations, the discussions become more complicated and involves the irregular
singular point theory and the elliptic integrals of the second kind and the hyperelliptic integrals. Some solutions in the
functional form cannot be expressed explicitly. One does not need to consider the cases r ≥ 2 because it is well known
that an algebraic equation with the degree greater than or equal to 5 is generally not solvable.

4. Conlusion
In this work, we are concerned with the K(m,n) equation with generalized evolution for seeking their traveling wave
solutions. We first transform each equation into an equivalent two-dimensional planar autonomous system then use the
first integral method to find one first integral which enables us to reduce the K(m,n) equation with generalized evolution
to a first-order integrable ordinary differential equations. Finally, a class of traveling wave solutions for the considered
equations are obtained where 4n = 3(m+1). These solutions include complex exponential function solutions. We
believe that this method can be applied widely to many other nonlinear evolution equations, and this will be done in a
future work.
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