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Abstract: In [8], Deveci et.al defined the generalized order-k Jacobsthal orbit  k

AJ G  of a finitely generated group G A , where 

 1 2, , , kA a a a  to be the sequence  ix  of the elements of G  such that  
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 for 0i  .   

The length of the period of the generalized order-k Jacobsthal orbit  k

AJ G  is denoted by  k

ALJ G  and is called the generalized 

order-k Jacobsthal length of G  [8].   

In this study, we obtain the generalized order-k Jacobsthal lengths of the quarternion group 
2nQ , the semidirect product 22n mQ   

and the direct product 22n mQ   for , 3m n  . 
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1 Introduction and Preliminaries 

The well-known Jacobsthal sequence  nJ  is defined by the following recurrence relation:  

for 2n   

1 22n n nJ J J                                                                (1.1) 

where 0 10 and 1J J  .  

In [13], Koken and Bozkurt showed that the Jacobsthal numbers are also generated by a matrix 
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Kalman [11] mentioned that these sequences are special cases of a sequence which is defined recursively as a linear 

combination of the preceding k terms: 

2nQ 22n mQ 
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0 1 1 1 1n k n n k n ka c a c a c a        , 

where 0 1 1, , , kc c c   are real constants. In [11], Kalman derived a number of closed-form formulas for the generalized 

sequence by companion matrix method as follows: 
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Then by an inductive argument he obtained that 
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. 

In [15], Yilmaz and Bozkurt defined the k  sequences of the generalized order-k Jacobsthal numbers as follows:  

for 0n   and 1 i k   

1 22 ...i i i i

n n n n kJ J J J      ,                                                 (1.2) 

with initial conditions 
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for1 0,
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where i

nJ  is the thn term of the thi  sequence. If 2k   and 1i   the generalized order-k Jacobsthal sequence is 

reduced to the conventional Jacobsthal sequence. 

In [15], Yilmaz and Bozkurt showed that 
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                                                    (1.3) 

where C  is called the generalized order-k Jacobsthal matrix and C  is a k-square matrix as following: 
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Also, it was obtained that 

1n nB C B    where 
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Lemma 1.1 (Yilmaz and Bozkurt [15]). Let C  and 

nB  be as (1.4) and (1.5), respectively. Then, for all integers 0n   

n

nB C . 

Reducing the generalized order-k Jacobsthal sequence  2k   by a modulus m , we can get the repeating sequences, 

denoted by 

   , , , , , ,

1 2 0 1, , , , , , ,k m k m k m k m k m k m

n k k iJ J J J J J   

where  , mod k m k

i iJ J m . It has the same recurrence relation as in (1.2) [8]. 

Theorem 1.1 (Deveci et al [8]). The sequence  ,k m

nJ   2k   is periodic. 

The notation 
,k mhJ  denotes the smallest period of  ,k m

nJ   2k   [8]. 

Theorem 1.2 (Deveci et.al [8]). If p  is a prime such that 2p  , then , a

a

k p

p
hJ C . 

The usual notation  is used for the semidirect product of the group   by   , where  is a 

homomorphism such that and  is an element of .  

The quaternion group 
2nQ ,  3n   are defined by presentation 

1 22 2 2 1 1

2
, : , ,

n n

nQ x y x e y x y xy x
       . 

Let , 3m n   be integers. By the definitions of the direct and semidirect products, we get the following presentations: 

 
1 22 2 2 1 2

22
, , : , , [ , ] [ , ]
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n

m
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          , 

, 

where if , then  is a homomorphism such that is defined by 

  and  

For more information see [9,10]. 

A sequence of group elements is periodic if, after a certain point, it consists only of repetitions of a fixed subsequence. 

The number of elements in the repeating subsequence is called the period of the sequence. For example, the sequence 

, , , , , , , , , , , , ,a b c d e b c d e b c d e  is periodic after the initial element a  and has period 4. A sequence of group elements 
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2 2
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is simply periodic with period k if the first k elements in the sequence form a repeating subsequence. For example, the 

sequence , , , , , , , , , , , , , , , , , ,a b c d e f a b c d e f a b c d e f  is simply periodic with period 6.  

Many references may be given for some special linear recurrence sequences in groups and related issues; see for 

example, [1-7,9,12,14,16]. Deveci et.al [8] expanded the theory to the Jacobsthal sequence. In this study, we obtain the 

generalized order-k Jacobsthal lengths of the quarternion group 
2nQ , the semidirect product 

22n mQ   and the direct 

product 
22n mQ    , 3m n   for initial (seeds) sets ,y x  and , ,y x z . 

2 Main Results and Proofs 

Definition 2.1. Let 
 1 2

,

, , k

k m

a a a
hJ  denote the smallest period of the integer-valued recurrence relation 

1 22n n n n ku u u u      , 
1 1 2 2, , , k ku a u a u a    when each entry is reduced modulo m .  

Theorem 2.1. Let   and let p  be a prime with 2p  ,  1 2gcd , , , , 1ka a a p   and 

 1 2gcd , , , , 1kx x x p  . Then we have 
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, ,
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Proof. Let ,k p
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hJ C r  . From (1.3), we can write 
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, in the natural way. Thus the proof is completes.   

Theorem 2.2.    
12 2,2

, 2
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ny x
LJ Q hJ



 . 

Proof. The orbit 
   2

, 2ny x
J Q  is 

22 1, , , .
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y x x
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It is clear from Theorem 2.1 that this sequence has period 
12,2n
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Theorem 2.3. 
     3 2 3,2
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n m
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Proof. The orbit 
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Using the above information, the orbit 
   3

2, , 2n my x z
J Q   becomes: 
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1 2 1 2, , , , , , ,k ka a a x x x 
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So we need an i  such that 
14 14 1 14 2, ,i i ix y x x x z    . if we choose 

32ni  , then we obtain 

3 3 3
2 2 22 7 2 2 7 1 2 7

2 2 22 7 2 7 1 2 7 2
, , , ,

n n n

n n n

J J J
x z y x xz x z

      
      

    

where 3

22 7 1n k
J    

 and 3

22 7 2n k
J    

 are even integers and 3

22 7 3n k
J    

 is an odd integer. So, the orbit 
   3

2, , 2n my x z
J Q   can be 

said to form layers of length 
22 7n  . It is easy to see that the orbit has period  2 3,2lcm 2 7,n mhJ  .    

Theorem 2.4. 
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m

my x z
LJ Q hJ  . 

Proof. The orbit 
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2, , 2n my x z
J Q   is 

2 1

2 1

2 3 2 1 6 2 13 28 60 129

2 277 595 2 1 1278 2 2745 5896 12664
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Using the above information, the orbit 
   3

2, , 2n my x z
J Q   becomes: 

33 3
01 1

3 3 3
6 7 8

3 33
13 1514

3 3 3
7 1 7 7 1

0 1 2

7 8 9

14 15 15

7 7 1 7 2
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J J J
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i i i
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The sequence can be said to form layers of length 42. So we need an i  such that 7 7 1 7 2, ,i i ix y x x x z       . It is easy 

to see that the orbit 
   3

2, , 2n my x z
J Q   has period  3,2lcm 7, mhJ .    
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